Difference between revisions of "User:Tohline/AxisymmetricConfigurations/SolutionStrategies"
(Replace spherical Poisson equation with 2D axisymmetric version) |
(→Axisymmetric Configurations (Structure — Part II): Clean up before creating PDF-formatted file) |
||
Line 4: | Line 4: | ||
=Axisymmetric Configurations (Structure — Part II)= | =Axisymmetric Configurations (Structure — Part II)= | ||
[[Image:LSU_Structure_still.gif|74px|left]] | <!-- [[Image:LSU_Structure_still.gif|74px|left]] --> | ||
Equilibrium, axisymmetric '''structures''' are obtained by searching for time-independent, steady-state solutions to the [[User:Tohline/AxisymmetricConfigurations/PGE#Axisymmetric_Configurations_.28Part_I.29|identified set of simplified governing equations]]. We begin by writing each governing equation in Eulerian form and setting all partial time-derivatives to zero: | |||
<div align="center"> | <div align="center"> | ||
<span id="Continuity"><font color="#770000">'''Equation of Continuity'''</font></span> | <span id="Continuity"><font color="#770000">'''Equation of Continuity'''</font></span> | ||
<math>\ | <math>\cancelto{0}{\frac{\partial\rho}{\partial t}} + \frac{1}{\varpi} \frac{\partial}{\partial\varpi} \biggl[ \rho \varpi \dot\varpi \biggr] | ||
+ \frac{\partial}{\partial z} \biggl[ \rho \dot{z} \biggr] = 0 </math><br /> | + \frac{\partial}{\partial z} \biggl[ \rho \dot{z} \biggr] = 0 </math><br /> | ||
Line 22: | Line 21: | ||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
<math> | <math>~ | ||
\ | \cancelto{0}{\frac{\partial \dot\varpi}{\partial t}} + \biggl[ \dot\varpi \frac{\partial \dot\varpi}{\partial\varpi} \biggr] + | ||
\biggl[ \dot{z} \frac{\partial \dot\varpi}{\partial z} \biggr] | \biggl[ \dot{z} \frac{\partial \dot\varpi}{\partial z} \biggr] | ||
</math> | </math> | ||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
= | <math>~=</math> | ||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math> | <math>~ | ||
- \biggl[ \frac{1}{\rho}\frac{\partial P}{\partial\varpi} + \frac{\partial \Phi}{\partial\varpi}\biggr] + \frac{j^2}{\varpi^3} | - \biggl[ \frac{1}{\rho}\frac{\partial P}{\partial\varpi} + \frac{\partial \Phi}{\partial\varpi}\biggr] + \frac{j^2}{\varpi^3} | ||
</math> | </math> | ||
Line 38: | Line 37: | ||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
<math> | <math>~ | ||
\ | \cancelto{0}{\frac{\partial \dot{z}}{\partial t}} + \biggl[ \dot\varpi \frac{\partial \dot{z}}{\partial\varpi} \biggr] + | ||
\biggl[ \dot{z} \frac{\partial \dot{z}}{\partial z} \biggr] | \biggl[ \dot{z} \frac{\partial \dot{z}}{\partial z} \biggr] | ||
</math> | </math> | ||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
= | <math>~=</math> | ||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math> | <math>~ | ||
- \biggl[ \frac{1}{\rho}\frac{\partial P}{\partial z} + \frac{\partial \Phi}{\partial z} \biggr] | - \biggl[ \frac{1}{\rho}\frac{\partial P}{\partial z} + \frac{\partial \Phi}{\partial z} \biggr] | ||
</math> | </math> | ||
Line 56: | Line 55: | ||
<span id="PGE:AdiabaticFirstLaw">Adiabatic Form of the<br /> | <span id="PGE:AdiabaticFirstLaw">Adiabatic Form of the<br /> | ||
<font color="#770000">'''First Law of Thermodynamics'''</font></span><br /> | <font color="#770000">'''First Law of Thermodynamics'''</font></span><br /> | ||
<math> | <math>~ | ||
\biggl\{\cancel{\frac{\partial \epsilon}{\partial t}} + \biggl[ \dot\varpi \frac{\partial \epsilon}{\partial\varpi} \biggr] + \biggl[ \dot{z} \frac{\partial \epsilon}{\partial z} \biggr]\biggr\} + | \biggl\{\cancel{\frac{\partial \epsilon}{\partial t}} + \biggl[ \dot\varpi \frac{\partial \epsilon}{\partial\varpi} \biggr] + \biggl[ \dot{z} \frac{\partial \epsilon}{\partial z} \biggr]\biggr\} + | ||
P \biggl\{\cancel{\frac{\partial }{\partial t}\biggl(\frac{1}{\rho}\biggr)} + | P \biggl\{\cancel{\frac{\partial }{\partial t}\biggl(\frac{1}{\rho}\biggr)} + | ||
Line 72: | Line 71: | ||
The steady-state flow field that will be adopted to satisfy both an axisymmetric geometry and the time-independent constraint is, <math>\vec{v} = \hat{e}_\varphi (\varpi \dot\varphi)</math>. That is, <math>\dot\varpi = \dot{z} = 0</math> but, in general, <math>\dot\varphi</math> is not zero and can be an arbitrary function of <math>\varpi</math> and <math>z</math>, that is, <math>\dot\varphi = \dot\varphi(\varpi,z)</math>. We will seek solutions to the above set of coupled equations for various chosen spatial distributions of the angular velocity <math>\dot\varphi(\varpi,z)</math>, or of the specific angular momentum, <math>j(\varpi,z) = \varpi^2 \dot\varphi(\varpi,z)</math>. | The steady-state flow field that will be adopted to satisfy both an axisymmetric geometry and the time-independent constraint is, <math>~\vec{v} = \hat{e}_\varphi (\varpi \dot\varphi)</math>. That is, <math>~\dot\varpi = \dot{z} = 0</math> but, in general, <math>~\dot\varphi</math> is not zero and can be an arbitrary function of <math>~\varpi</math> and <math>~z</math>, that is, <math>~\dot\varphi = \dot\varphi(\varpi,z)</math>. We will seek solutions to the above set of coupled equations for various chosen spatial distributions of the angular velocity <math>~\dot\varphi(\varpi,z)</math>, or of the specific angular momentum, <math>~j(\varpi,z) = \varpi^2 \dot\varphi(\varpi,z)</math>. | ||
Line 81: | Line 80: | ||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
<math> | <math>~ | ||
\biggl[ \frac{1}{\rho}\frac{\partial P}{\partial\varpi} + \frac{\partial \Phi}{\partial\varpi}\biggr] - \frac{j^2}{\varpi^3} | \biggl[ \frac{1}{\rho}\frac{\partial P}{\partial\varpi} + \frac{\partial \Phi}{\partial\varpi}\biggr] - \frac{j^2}{\varpi^3} | ||
</math> | </math> | ||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
= | <math>~=</math> | ||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
0 | <math>~0</math> | ||
</td> | </td> | ||
</tr> | </tr> | ||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
<math> | <math>~ | ||
\biggl[ \frac{1}{\rho}\frac{\partial P}{\partial z} + \frac{\partial \Phi}{\partial z} \biggr] | \biggl[ \frac{1}{\rho}\frac{\partial P}{\partial z} + \frac{\partial \Phi}{\partial z} \biggr] | ||
</math> | </math> | ||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
= | <math>~=</math> | ||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
0 | <math>~0</math> | ||
</td> | </td> | ||
</tr> | </tr> | ||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
<math> | <math>~ | ||
\frac{1}{\varpi} \frac{\partial }{\partial\varpi} \biggl[ \varpi \frac{\partial \Phi}{\partial\varpi} \biggr] + \frac{\partial^2 \Phi}{\partial z^2} | \frac{1}{\varpi} \frac{\partial }{\partial\varpi} \biggl[ \varpi \frac{\partial \Phi}{\partial\varpi} \biggr] + \frac{\partial^2 \Phi}{\partial z^2} | ||
</math> | </math> | ||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
= | <math>~=</math> | ||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math>4\pi G \rho</math> | <math>~4\pi G \rho \, .</math> | ||
</td> | </td> | ||
</tr> | </tr> | ||
Line 128: | Line 127: | ||
===Simple Rotation Profile and Centrifugal Potential=== | ===Simple Rotation Profile and Centrifugal Potential=== | ||
Equilibrium axisymmetric structures — that is, solutions to the above set of simplified governing equations — can be found for specified angular momentum distributions that display a wide range of variations across both of the spatial coordinates, <math>\varpi</math> and <math>z</math>. Experience has shown, however, that the derived structures tend to be dynamically unstable unless the angular velocity is uniform on cylinders, that is, unless the angular velocity is independent of <math>z</math>. With this in mind, we will focus here on a solution strategy that is designed to construct structures with a | Equilibrium axisymmetric structures — that is, solutions to the above set of simplified governing equations — can be found for specified angular momentum distributions that display a wide range of variations across both of the spatial coordinates, <math>~\varpi</math> and <math>~z</math>. Experience has shown, however, that the derived structures tend to be dynamically unstable unless the angular velocity is uniform on cylinders, that is, unless the angular velocity is independent of <math>~z</math>. With this in mind, we will focus here on a solution strategy that is designed to construct structures with a | ||
<div align="center"> | <div align="center"> | ||
Line 136: | Line 135: | ||
</div> | </div> | ||
which of course means that we will only be examining axisymmetric structures with specific angular momentum distributions of the form <math>j(\varpi,z) = j(\varpi) = \varpi^2 \dot\varphi(\varpi)</math>. [We will find that even this ''simple rotation'' profile does not guarantee dynamical stability; for example, Lord Rayleigh ([http://rspa.royalsocietypublishing.org/content/93/648/148.full.pdf+html 1917, Proc. R. Soc. Lond. A, 93, 148-154]) showed that unstable structures will arise if <math>j</math> is a decreasing function of the radial coordinate, <math>\varpi</math>.] | which of course means that we will only be examining axisymmetric structures with specific angular momentum distributions of the form <math>~j(\varpi,z) = j(\varpi) = \varpi^2 \dot\varphi(\varpi)</math>. [We will find that even this ''simple rotation'' profile does not guarantee dynamical stability; for example, Lord Rayleigh ([http://rspa.royalsocietypublishing.org/content/93/648/148.full.pdf+html 1917, Proc. R. Soc. Lond. A, 93, 148-154]) showed that unstable structures will arise if <math>~j</math> is a decreasing function of the radial coordinate, <math>~\varpi</math>.] | ||
After adopting a simple rotation profile, it becomes useful to define an effective potential, | After adopting a simple rotation profile, it becomes useful to define an effective potential, | ||
Line 167: | Line 166: | ||
</td> | </td> | ||
<th align="center"> | <th align="center"> | ||
<b><math>\dot\varphi(\varpi)</math></b> | <b><math>~\dot\varphi(\varpi)</math></b> | ||
</th> | </th> | ||
<th align="center"> | <th align="center"> | ||
<b><math>v_\varphi(\varpi)</math></b> | <b><math>~v_\varphi(\varpi)</math></b> | ||
</th> | </th> | ||
<th align="center"> | <th align="center"> | ||
<b><math>j(\varpi)</math></b> | <b><math>~j(\varpi)</math></b> | ||
</th> | </th> | ||
<th align="center"> | <th align="center"> | ||
<b><math>\frac{j^2}{\varpi^3}</math></b> | <b><math>~\frac{j^2}{\varpi^3}</math></b> | ||
</th> | </th> | ||
<th align="center"> | <th align="center"> | ||
<b><math>\Psi(\varpi)</math></b> | <b><math>~\Psi(\varpi)</math></b> | ||
</th> | </th> | ||
<th align="center"> | <th align="center"> | ||
Line 188: | Line 187: | ||
<tr> | <tr> | ||
<td align="center"> | <td align="center"> | ||
<font color="maroon"><b>Power-law</b></font><br />(any <math>q \neq 1</math>) | <font color="maroon"><b>Power-law</b></font><br />(any <math>~q \neq 1</math>) | ||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
<math>\frac{j_0}{\varpi_0^2} \biggl( \frac{\varpi}{\varpi_0} \biggr)^{(q-2)}</math> | <math>~\frac{j_0}{\varpi_0^2} \biggl( \frac{\varpi}{\varpi_0} \biggr)^{(q-2)}</math> | ||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
<math>\frac{j_0}{\varpi_0} \biggl( \frac{\varpi}{\varpi_0} \biggr)^{(q-1)}</math> | <math>~\frac{j_0}{\varpi_0} \biggl( \frac{\varpi}{\varpi_0} \biggr)^{(q-1)}</math> | ||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
<math>j_0\biggl( \frac{\varpi}{\varpi_0} \biggr)^{q}</math> | <math>~j_0\biggl( \frac{\varpi}{\varpi_0} \biggr)^{q}</math> | ||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
<math>\frac{j_0^2}{\varpi_0^3} \biggl( \frac{\varpi}{\varpi_0} \biggr)^{(2q-3)}</math> | <math>~\frac{j_0^2}{\varpi_0^3} \biggl( \frac{\varpi}{\varpi_0} \biggr)^{(2q-3)}</math> | ||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
<math>- \frac{1}{2(q-1)} \biggl[ \frac{j_0^2}{\varpi_0^2} \biggl( \frac{\varpi}{\varpi_0} \biggr)^{2(q-1)} \biggr]</math> | <math>~- \frac{1}{2(q-1)} \biggl[ \frac{j_0^2}{\varpi_0^2} \biggl( \frac{\varpi}{\varpi_0} \biggr)^{2(q-1)} \biggr]</math> | ||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
Line 212: | Line 211: | ||
<tr> | <tr> | ||
<td align="center"> | <td align="center"> | ||
<font color="maroon"><b>Uniform rotation</b></font><br /><math>(q = 2)</math> | <font color="maroon"><b>Uniform rotation</b></font><br /><math>~(q = 2)</math> | ||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
<math>\omega_0</math> | <math>~\omega_0</math> | ||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
<math>\varpi \omega_0</math> | <math>~\varpi \omega_0</math> | ||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
<math>\varpi^2 \omega_0</math> | <math>~\varpi^2 \omega_0</math> | ||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
<math>\varpi \omega_0^2</math> | <math>~\varpi \omega_0^2</math> | ||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
<math>- \frac{1}{2} \varpi^2 \omega_0^2</math> | <math>~- \frac{1}{2} \varpi^2 \omega_0^2</math> | ||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
Line 236: | Line 235: | ||
<tr> | <tr> | ||
<td align="center"> | <td align="center"> | ||
<font color="maroon"><b>Uniform</b></font> <math>v_\varphi</math><br /><math>(q = 1)</math> | <font color="maroon"><b>Uniform</b></font> <math>v_\varphi</math><br /><math>~(q = 1)</math> | ||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
<math>\frac{v_0}{\varpi}</math> | <math>~\frac{v_0}{\varpi}</math> | ||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
<math>v_0</math> | <math>~v_0</math> | ||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
<math>\varpi v_0</math> | <math>~\varpi v_0</math> | ||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
<math>\frac{v_0^2}{\varpi}</math> | <math>~\frac{v_0^2}{\varpi}</math> | ||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
<math> - v_0^2 \ln\biggl( \frac{\varpi}{\varpi_0} \biggr)</math> | <math> ~- v_0^2 \ln\biggl( \frac{\varpi}{\varpi_0} \biggr)</math> | ||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
Line 261: | Line 260: | ||
<tr> | <tr> | ||
<td align="center"> | <td align="center"> | ||
<font color="maroon"><b>Keplerian</b></font><br /><math>(q = 1/2)</math> | <font color="maroon"><b>Keplerian</b></font><br /><math>~(q = 1/2)</math> | ||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
<math>\omega_K \biggl(\frac{\varpi}{\varpi_0}\biggr)^{-3/2}</math> | <math>~\omega_K \biggl(\frac{\varpi}{\varpi_0}\biggr)^{-3/2}</math> | ||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
<math>\varpi_0 \omega_K \biggl(\frac{\varpi}{\varpi_0}\biggr)^{-1/2}</math> | <math>~\varpi_0 \omega_K \biggl(\frac{\varpi}{\varpi_0}\biggr)^{-1/2}</math> | ||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
<math>\varpi_0^2 \omega_K \biggl(\frac{\varpi}{\varpi_0}\biggr)^{1/2}</math> | <math>~\varpi_0^2 \omega_K \biggl(\frac{\varpi}{\varpi_0}\biggr)^{1/2}</math> | ||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
<math>\varpi_0 \omega_K^2 \biggl( \frac{\varpi}{\varpi_0} \biggr)^{-2}</math> | <math>~\varpi_0 \omega_K^2 \biggl( \frac{\varpi}{\varpi_0} \biggr)^{-2}</math> | ||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
<math>+ \frac{\varpi_0^3 \omega_K^2}{\varpi} </math> | <math>~+ \frac{\varpi_0^3 \omega_K^2}{\varpi} </math> | ||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
Line 286: | Line 285: | ||
<tr> | <tr> | ||
<td align="center"> | <td align="center"> | ||
<font color="maroon"><b>Uniform specific <br />angular momentum</b></font><br /><math>(q = 0)</math> | <font color="maroon"><b>Uniform specific <br />angular momentum</b></font><br /><math>~(q = 0)</math> | ||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
<math>\frac{j_0}{\varpi^2}</math> | <math>~\frac{j_0}{\varpi^2}</math> | ||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
<math>\frac{j_0}{\varpi}</math> | <math>~\frac{j_0}{\varpi}</math> | ||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
<math>j_0</math> | <math>~j_0</math> | ||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
<math>\frac{j_0^2}{\varpi^3}</math> | <math>~\frac{j_0^2}{\varpi^3}</math> | ||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
<math>+ \frac{1}{2} \biggl[ \frac{j_0^2}{\varpi^2} \biggr]</math> | <math>~+ \frac{1}{2} \biggl[ \frac{j_0^2}{\varpi^2} \biggr]</math> | ||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
Line 314: | Line 313: | ||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
<math>\omega_c \biggl[ \frac{A^2}{A^2 + \varpi^2} \biggr]</math> | <math>~\omega_c \biggl[ \frac{A^2}{A^2 + \varpi^2} \biggr]</math> | ||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
<math>\omega_c \biggl[ \frac{A^2 \varpi}{A^2 + \varpi^2} \biggr]</math> | <math>~\omega_c \biggl[ \frac{A^2 \varpi}{A^2 + \varpi^2} \biggr]</math> | ||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
<math>\omega_c \biggl[ \frac{A^2 \varpi^2}{A^2 + \varpi^2} \biggr]</math> | <math>~\omega_c \biggl[ \frac{A^2 \varpi^2}{A^2 + \varpi^2} \biggr]</math> | ||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
<math>\omega_c^2 \biggl[ \frac{A^4 \varpi}{(A^2 + \varpi^2)^2} \biggr]</math> | <math>~\omega_c^2 \biggl[ \frac{A^4 \varpi}{(A^2 + \varpi^2)^2} \biggr]</math> | ||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
<math>+ \frac{1}{2} \biggl[ \frac{\omega_c^2 A^4}{A^2 + \varpi^2} \biggr]</math> | <math>~+ \frac{1}{2} \biggl[ \frac{\omega_c^2 A^4}{A^2 + \varpi^2} \biggr]</math> | ||
</td> | </td> | ||
<td align="center"> | <td align="center"> |
Revision as of 03:27, 13 July 2015
| Tiled Menu | Tables of Content | Banner Video | Tohline Home Page | |
Axisymmetric Configurations (Structure — Part II)
Equilibrium, axisymmetric structures are obtained by searching for time-independent, steady-state solutions to the identified set of simplified governing equations. We begin by writing each governing equation in Eulerian form and setting all partial time-derivatives to zero:
Equation of Continuity
<math>\cancelto{0}{\frac{\partial\rho}{\partial t}} + \frac{1}{\varpi} \frac{\partial}{\partial\varpi} \biggl[ \rho \varpi \dot\varpi \biggr]
+ \frac{\partial}{\partial z} \biggl[ \rho \dot{z} \biggr] = 0 </math>
The Two Relevant Components of the
Euler Equation
<math>~ \cancelto{0}{\frac{\partial \dot\varpi}{\partial t}} + \biggl[ \dot\varpi \frac{\partial \dot\varpi}{\partial\varpi} \biggr] + \biggl[ \dot{z} \frac{\partial \dot\varpi}{\partial z} \biggr] </math> |
<math>~=</math> |
<math>~ - \biggl[ \frac{1}{\rho}\frac{\partial P}{\partial\varpi} + \frac{\partial \Phi}{\partial\varpi}\biggr] + \frac{j^2}{\varpi^3} </math> |
<math>~ \cancelto{0}{\frac{\partial \dot{z}}{\partial t}} + \biggl[ \dot\varpi \frac{\partial \dot{z}}{\partial\varpi} \biggr] + \biggl[ \dot{z} \frac{\partial \dot{z}}{\partial z} \biggr] </math> |
<math>~=</math> |
<math>~ - \biggl[ \frac{1}{\rho}\frac{\partial P}{\partial z} + \frac{\partial \Phi}{\partial z} \biggr] </math> |
Adiabatic Form of the
First Law of Thermodynamics
<math>~
\biggl\{\cancel{\frac{\partial \epsilon}{\partial t}} + \biggl[ \dot\varpi \frac{\partial \epsilon}{\partial\varpi} \biggr] + \biggl[ \dot{z} \frac{\partial \epsilon}{\partial z} \biggr]\biggr\} +
P \biggl\{\cancel{\frac{\partial }{\partial t}\biggl(\frac{1}{\rho}\biggr)} +
\biggl[ \dot\varpi \frac{\partial }{\partial\varpi}\biggl(\frac{1}{\rho}\biggr) \biggr] +
\biggl[ \dot{z} \frac{\partial }{\partial z}\biggl(\frac{1}{\rho}\biggr) \biggr] \biggr\} = 0
</math>
Poisson Equation
<math>
\frac{1}{\varpi} \frac{\partial }{\partial\varpi} \biggl[ \varpi \frac{\partial \Phi}{\partial\varpi} \biggr] + \frac{\partial^2 \Phi}{\partial z^2} = 4\pi G \rho .
</math>
The steady-state flow field that will be adopted to satisfy both an axisymmetric geometry and the time-independent constraint is, <math>~\vec{v} = \hat{e}_\varphi (\varpi \dot\varphi)</math>. That is, <math>~\dot\varpi = \dot{z} = 0</math> but, in general, <math>~\dot\varphi</math> is not zero and can be an arbitrary function of <math>~\varpi</math> and <math>~z</math>, that is, <math>~\dot\varphi = \dot\varphi(\varpi,z)</math>. We will seek solutions to the above set of coupled equations for various chosen spatial distributions of the angular velocity <math>~\dot\varphi(\varpi,z)</math>, or of the specific angular momentum, <math>~j(\varpi,z) = \varpi^2 \dot\varphi(\varpi,z)</math>.
After setting the radial and vertical velocities to zero, we see that the <math>1^\mathrm{st}</math> (continuity) and <math>4^\mathrm{th}</math> (first law of thermodynamics) equations are trivially satisfied while the <math>2^\mathrm{nd}</math> & <math>3^\mathrm{rd}</math> (Euler) and <math>5^\mathrm{th}</math> (Poisson) give, respectively,
<math>~ \biggl[ \frac{1}{\rho}\frac{\partial P}{\partial\varpi} + \frac{\partial \Phi}{\partial\varpi}\biggr] - \frac{j^2}{\varpi^3} </math> |
<math>~=</math> |
<math>~0</math> |
<math>~ \biggl[ \frac{1}{\rho}\frac{\partial P}{\partial z} + \frac{\partial \Phi}{\partial z} \biggr] </math> |
<math>~=</math> |
<math>~0</math> |
<math>~ \frac{1}{\varpi} \frac{\partial }{\partial\varpi} \biggl[ \varpi \frac{\partial \Phi}{\partial\varpi} \biggr] + \frac{\partial^2 \Phi}{\partial z^2} </math> |
<math>~=</math> |
<math>~4\pi G \rho \, .</math> |
As has been outlined in our discussion of supplemental relations for time-independent problems, in the context of this H_Book we will close this set of equations by specifying a structural, barotropic relationship between <math>~P</math> and <math>~\rho</math>.
Solution Strategy
Simple Rotation Profile and Centrifugal Potential
Equilibrium axisymmetric structures — that is, solutions to the above set of simplified governing equations — can be found for specified angular momentum distributions that display a wide range of variations across both of the spatial coordinates, <math>~\varpi</math> and <math>~z</math>. Experience has shown, however, that the derived structures tend to be dynamically unstable unless the angular velocity is uniform on cylinders, that is, unless the angular velocity is independent of <math>~z</math>. With this in mind, we will focus here on a solution strategy that is designed to construct structures with a
Simple Rotation Profile
<math>\dot\varphi(\varpi,z) = \dot\varphi(\varpi) ,</math>
which of course means that we will only be examining axisymmetric structures with specific angular momentum distributions of the form <math>~j(\varpi,z) = j(\varpi) = \varpi^2 \dot\varphi(\varpi)</math>. [We will find that even this simple rotation profile does not guarantee dynamical stability; for example, Lord Rayleigh (1917, Proc. R. Soc. Lond. A, 93, 148-154) showed that unstable structures will arise if <math>~j</math> is a decreasing function of the radial coordinate, <math>~\varpi</math>.]
After adopting a simple rotation profile, it becomes useful to define an effective potential,
<math> \Phi_\mathrm{eff} \equiv \Phi + \Psi , </math>
that is written in terms of a centrifugal potential,
<math> \Psi \equiv - \int \frac{j^2(\varpi)}{\varpi^3} d\varpi ~. </math>
The accompanying table provides analytic expressions for <math>\Psi(\varpi)</math> that correspond to various prescribed functional forms for <math>\dot\varphi(\varpi)</math> or <math>j(\varpi)</math>, along with citations to published articles in which equilibrium axisymmetric structures have been constructed using the various tabulated simple rotation profile presriptions.
Simple Rotation Profiles |
||||||
---|---|---|---|---|---|---|
|
<math>~\dot\varphi(\varpi)</math> |
<math>~v_\varphi(\varpi)</math> |
<math>~j(\varpi)</math> |
<math>~\frac{j^2}{\varpi^3}</math> |
<math>~\Psi(\varpi)</math> |
Refs. |
Power-law |
<math>~\frac{j_0}{\varpi_0^2} \biggl( \frac{\varpi}{\varpi_0} \biggr)^{(q-2)}</math> |
<math>~\frac{j_0}{\varpi_0} \biggl( \frac{\varpi}{\varpi_0} \biggr)^{(q-1)}</math> |
<math>~j_0\biggl( \frac{\varpi}{\varpi_0} \biggr)^{q}</math> |
<math>~\frac{j_0^2}{\varpi_0^3} \biggl( \frac{\varpi}{\varpi_0} \biggr)^{(2q-3)}</math> |
<math>~- \frac{1}{2(q-1)} \biggl[ \frac{j_0^2}{\varpi_0^2} \biggl( \frac{\varpi}{\varpi_0} \biggr)^{2(q-1)} \biggr]</math> |
d |
Uniform rotation |
<math>~\omega_0</math> |
<math>~\varpi \omega_0</math> |
<math>~\varpi^2 \omega_0</math> |
<math>~\varpi \omega_0^2</math> |
<math>~- \frac{1}{2} \varpi^2 \omega_0^2</math> |
a, f |
Uniform <math>v_\varphi</math> |
<math>~\frac{v_0}{\varpi}</math> |
<math>~v_0</math> |
<math>~\varpi v_0</math> |
<math>~\frac{v_0^2}{\varpi}</math> |
<math> ~- v_0^2 \ln\biggl( \frac{\varpi}{\varpi_0} \biggr)</math> |
e |
Keplerian |
<math>~\omega_K \biggl(\frac{\varpi}{\varpi_0}\biggr)^{-3/2}</math> |
<math>~\varpi_0 \omega_K \biggl(\frac{\varpi}{\varpi_0}\biggr)^{-1/2}</math> |
<math>~\varpi_0^2 \omega_K \biggl(\frac{\varpi}{\varpi_0}\biggr)^{1/2}</math> |
<math>~\varpi_0 \omega_K^2 \biggl( \frac{\varpi}{\varpi_0} \biggr)^{-2}</math> |
<math>~+ \frac{\varpi_0^3 \omega_K^2}{\varpi} </math> |
d |
Uniform specific |
<math>~\frac{j_0}{\varpi^2}</math> |
<math>~\frac{j_0}{\varpi}</math> |
<math>~j_0</math> |
<math>~\frac{j_0^2}{\varpi^3}</math> |
<math>~+ \frac{1}{2} \biggl[ \frac{j_0^2}{\varpi^2} \biggr]</math> |
c,g |
j-constant |
<math>~\omega_c \biggl[ \frac{A^2}{A^2 + \varpi^2} \biggr]</math> |
<math>~\omega_c \biggl[ \frac{A^2 \varpi}{A^2 + \varpi^2} \biggr]</math> |
<math>~\omega_c \biggl[ \frac{A^2 \varpi^2}{A^2 + \varpi^2} \biggr]</math> |
<math>~\omega_c^2 \biggl[ \frac{A^4 \varpi}{(A^2 + \varpi^2)^2} \biggr]</math> |
<math>~+ \frac{1}{2} \biggl[ \frac{\omega_c^2 A^4}{A^2 + \varpi^2} \biggr]</math> |
a,b |
aHachisu, I. 1986, ApJS, 61, 479-507
(especially §II.c) |
Technique
To solve the above-specified set of simplified governing equations we will essentially adopt Technique 3 as presented in our construction of spherically symmetric configurations. Using a barotropic equation of state — in which case <math>dP/\rho</math> can be replaced by <math>dH</math> — we can combine the two components of the Euler equation shown above back into a single vector equation of the form,
<math> \nabla \biggl[ H + \Phi_\mathrm{eff} \biggr] = 0 , </math>
where it is understood that here, as displayed earlier, the gradient represents a two-dimensional operator written in cylindrical coordinates that is appropriate for axisymmetric configurations, namely,
<math> \nabla f = {\hat{e}}_\varpi \biggl[ \frac{\partial f}{\partial\varpi} \biggr] + {\hat{e}}_z \biggl[ \frac{\partial f}{\partial z} \biggr] , </math>
This means that, throughout our configuration, the functions <math>~H</math>(<math>~\rho</math>) and <math>\Phi_\mathrm{eff}</math>(<math>~\rho</math>) must sum to a constant value, call it <math>C_\mathrm{B}</math>. That is to say, the statement of hydrostatic balance for axisymmetric configurations reduces to the algebraic expression,
<math>H + \Phi_\mathrm{eff} = C_\mathrm{B}</math> .
This relation must be solved in conjunction with the Poisson equation,
<math>
\frac{1}{\varpi} \frac{\partial }{\partial\varpi} \biggl[ \varpi \frac{\partial \Phi}{\partial\varpi} \biggr] + \frac{\partial^2 \Phi}{\partial z^2} = 4\pi G \rho ,
</math>
giving us two equations (one algebraic and the other a two-dimensional <math>2^\mathrm{nd}</math>-order elliptic PDE) that relate the three unknown functions, <math>~H</math>, <math>~\rho</math>, and <math>~\Phi</math>.
See Also
- Part I of Axisymmetric Configurations: Simplified Governing Equations
© 2014 - 2021 by Joel E. Tohline |