Difference between revisions of "User:Tohline/ThreeDimensionalConfigurations/HomogeneousEllipsoids"

From VistrailsWiki
Jump to navigation Jump to search
(→‎Gravitational Potential: Evaluation of triaxial coefficients)
Line 6: Line 6:


==Gravitational Potential==
==Gravitational Potential==
===The Defining Integral Expressions===


As has been shown in a separate discussion (not yet typed!), the acceleration due to the gravitational attraction of a distribution of mass {{User:Tohline/Math/VAR_Density01}}<math>(\vec{x})</math> can be derived from the gradient of a scalar potential {{User:Tohline/Math/VAR_NewtonianPotential01}}<math>(\vec{x})</math> defined as follows:
As has been shown in a separate discussion (not yet typed!), the acceleration due to the gravitational attraction of a distribution of mass {{User:Tohline/Math/VAR_Density01}}<math>(\vec{x})</math> can be derived from the gradient of a scalar potential {{User:Tohline/Math/VAR_NewtonianPotential01}}<math>(\vec{x})</math> defined as follows:
Line 82: Line 84:
</table>
</table>


As is detailed below, the integrals defining <math>A_i</math> and <math>I_\mathrm{BT}</math> can be expressed in terms of standard incomplete elliptic integrals, or in terms of more elementary functions if either <math>a_2 = a_1</math> (oblate spheroids) or <math>a_3 = a_2</math> (prolate spheroids).
 
===Evaluation of Coefficients===
 
The integrals defining <math>A_i</math> and <math>I_\mathrm{BT}</math> can be expressed in terms of standard incomplete elliptic integrals of the first kind, <math>F(\theta,k)</math>, and second kind, <math>E(\theta,k)</math>, where,
 
<div align="center">
<math>
\theta \equiv \cos^{-1} \biggl(\frac{a_3}{a_1} \biggr) ,
</math><br />
 
<math>
k \equiv \biggl[\frac{(a_1^2 - a_2^2)}{(a_1^2 - a_3^2)} \biggr]^{1/2} ,
</math>
</div>
 
or in terms of more elementary functions if either <math>a_2 = a_1</math> (oblate spheroids) or <math>a_3 = a_2</math> (prolate spheroids).
 
====Triaxial Configurations====
 
If the three principal axes of the configuration are unequal in length and related to one another such that <math>a_1 > a_2 > a_3 </math>,
 
<table align="center" border=0 cellpadding="3">
<tr>
  <td align="right">
<math>
A_1
</math>
  </td>
  <td align="center">
<math>
=
</math>
  </td>
  <td align="left">
<math>
\frac{2a_2 a_3}{a_1^2} \biggl[  \frac{F(\theta,k) - E(\theta,k)}{k^2 \sin^3\theta} \biggr] ~~;
</math>
  </td>
</tr>
 
<tr>
  <td align="right">
<math>
A_2
</math>
  </td>
  <td align="center">
<math>
=
</math>
  </td>
  <td align="left">
<math>
\frac{2a_2 a_3}{a_1^2} \biggl[ \frac{E(\theta,k) - (1-k^2)F(\theta,k) - (a_3/a_2)k^2\sin\theta}{k^2 (1-k^2) \sin^3\theta}\biggr]  ~~;
</math>
  </td>
</tr>
 
<tr>
  <td align="right">
<math>
A_3
</math>
  </td>
  <td align="center">
<math>
=
</math>
  </td>
  <td align="left">
<math>
\frac{2a_2 a_3}{a_1^2} \biggl[  \frac{(a_2/a_3) \sin\theta - E(\theta,k)}{(1-k^2) \sin^3\theta} \biggr] ~~;
</math>
  </td>
</tr>
 
<tr>
  <td align="right">
<math>
I_\mathrm{BT}
</math>
  </td>
  <td align="center">
<math>
=
</math>
  </td>
  <td align="left">
<math>
\frac{2a_2 a_3}{a_1^2} \biggl[ \frac{F(\theta,k)}{\sin\theta} \biggr] ~~.
</math>
  </td>
</tr>
 
</table>


=See Also=
=See Also=

Revision as of 02:40, 21 April 2010

Whitworth's (1981) Isothermal Free-Energy Surface
|   Tiled Menu   |   Tables of Content   |  Banner Video   |  Tohline Home Page   |

Properties of Homogeneous Ellipsoids

Gravitational Potential

The Defining Integral Expressions

As has been shown in a separate discussion (not yet typed!), the acceleration due to the gravitational attraction of a distribution of mass <math>~\rho</math><math>(\vec{x})</math> can be derived from the gradient of a scalar potential <math>~\Phi</math><math>(\vec{x})</math> defined as follows:

<math> \Phi(\vec{x}) \equiv - \int \frac{G \rho(\vec{x}')}{|\vec{x}' - \vec{x}|} d^3 x' . </math>

As has been explicitly demonstrated in Chapter 3 of Chandrasekhar (1987) and summarized in Table 2-2 (p. 57) of Binney & Tremaine (1987), for an homogeneous ellipsoid this volume integral can be evaluated analytically in closed form. Specifically, at an internal point or on the surface of an homogeneous ellipsoid with semi-axes <math>(x,y,z) = (a_1,a_2,a_3)</math>,

<math>

\Phi(\vec{x}) = -\pi G \rho \biggl[ I_\mathrm{BT} a_1^2 - \biggl(A_1 x^2 + A_2 y^2 +A_3 z^2 \biggr) \biggr],

</math>

where,


<math> A_i </math>

<math> \equiv </math>

<math> a_1 a_2 a_3 \int_0^\infty \frac{du}{\Delta (a_i^2 + u )} , </math>

<math> I_\mathrm{BT} </math>

<math> \equiv </math>

<math> \frac{a_2 a_3}{a_1} \int_0^\infty \frac{du}{\Delta} = A_1 + A_2\biggl(\frac{a_2}{a_1}\biggr)^2+ A_3\biggl(\frac{a_3}{a_1}\biggr)^2 , </math>

<math> \Delta </math>

<math> \equiv </math>

<math> \biggl[ (a_1^2 + u)(a_2^2 + u)(a_3^2 + u) \biggr]^{1/2} . </math>


Evaluation of Coefficients

The integrals defining <math>A_i</math> and <math>I_\mathrm{BT}</math> can be expressed in terms of standard incomplete elliptic integrals of the first kind, <math>F(\theta,k)</math>, and second kind, <math>E(\theta,k)</math>, where,

<math> \theta \equiv \cos^{-1} \biggl(\frac{a_3}{a_1} \biggr) , </math>

<math> k \equiv \biggl[\frac{(a_1^2 - a_2^2)}{(a_1^2 - a_3^2)} \biggr]^{1/2} , </math>

or in terms of more elementary functions if either <math>a_2 = a_1</math> (oblate spheroids) or <math>a_3 = a_2</math> (prolate spheroids).

Triaxial Configurations

If the three principal axes of the configuration are unequal in length and related to one another such that <math>a_1 > a_2 > a_3 </math>,

<math> A_1 </math>

<math> = </math>

<math> \frac{2a_2 a_3}{a_1^2} \biggl[ \frac{F(\theta,k) - E(\theta,k)}{k^2 \sin^3\theta} \biggr] ~~; </math>

<math> A_2 </math>

<math> = </math>

<math> \frac{2a_2 a_3}{a_1^2} \biggl[ \frac{E(\theta,k) - (1-k^2)F(\theta,k) - (a_3/a_2)k^2\sin\theta}{k^2 (1-k^2) \sin^3\theta}\biggr] ~~; </math>

<math> A_3 </math>

<math> = </math>

<math> \frac{2a_2 a_3}{a_1^2} \biggl[ \frac{(a_2/a_3) \sin\theta - E(\theta,k)}{(1-k^2) \sin^3\theta} \biggr] ~~; </math>

<math> I_\mathrm{BT} </math>

<math> = </math>

<math> \frac{2a_2 a_3}{a_1^2} \biggl[ \frac{F(\theta,k)}{\sin\theta} \biggr] ~~. </math>

See Also

Whitworth's (1981) Isothermal Free-Energy Surface

© 2014 - 2021 by Joel E. Tohline
|   H_Book Home   |   YouTube   |
Appendices: | Equations | Variables | References | Ramblings | Images | myphys.lsu | ADS |
Recommended citation:   Tohline, Joel E. (2021), The Structure, Stability, & Dynamics of Self-Gravitating Fluids, a (MediaWiki-based) Vistrails.org publication, https://www.vistrails.org/index.php/User:Tohline/citation