Difference between revisions of "User:Tohline/AxisymmetricConfigurations/PGE"

From VistrailsWiki
Jump to navigation Jump to search
(→‎Axisymmetric Configurations: Layout equations inside table)
Line 10: Line 10:
<li>Expressing the vector time-derivative and each of the multidimensional spatial operators in cylindrical coordinates (<math>\varpi, \varphi, z</math>)  (see, for example, the [http://en.wikipedia.org/wiki/Del_in_cylindrical_and_spherical_coordinates Wikipedia discussion of vector calculus formulae in cylindrical coordinates]):
<li>Expressing the vector time-derivative and each of the multidimensional spatial operators in cylindrical coordinates (<math>\varpi, \varphi, z</math>)  (see, for example, the [http://en.wikipedia.org/wiki/Del_in_cylindrical_and_spherical_coordinates Wikipedia discussion of vector calculus formulae in cylindrical coordinates]):


<div align="center">
<table align="center" border="0" cellpadding="5">
<tr>
<td colspan="3" align="center">
<font color="#770000"><b>3D Operators in Cylindrical Coordinates</b></font>
</td>
</tr>
 
<tr>
<td align="right">
<math>
<math>
\nabla f = {\hat{e}}_\varpi \biggl[ \frac{\partial f}{\partial\varpi} \biggr] + {\hat{e}}_\varphi \biggl[ \frac{1}{\varpi} \frac{\partial f}{\partial\varphi} \biggr] +  {\hat{e}}_z \biggl[ \frac{\partial f}{\partial z} \biggr] ;
\nabla f
</math><br />
</math>
</td>
<td align="center">
=
</td>
<td align="left">
<math>
{\hat{e}}_\varpi \biggl[ \frac{\partial f}{\partial\varpi} \biggr] + {\hat{e}}_\varphi \biggl[ \frac{1}{\varpi} \frac{\partial f}{\partial\varphi} \biggr] +  {\hat{e}}_z \biggl[ \frac{\partial f}{\partial z} \biggr] ;
</math>
</td>
</tr>


<tr>
<td align="right">
<math>
\nabla^2 f
</math>
</td>
<td align="center">
=
</td>
<td align="left">
<math>
<math>
\nabla \cdot \vec{F} = \frac{1}{\varpi} \frac{\partial (\varpi F_\varpi)}{\partial\varpi} + \frac{1}{\varpi} \frac{\partial F_\varphi}{\partial\varphi} + \frac{\partial F_z}{\partial z} ;
\frac{1}{\varpi} \frac{\partial }{\partial\varpi} \biggl[ \varpi \frac{\partial f}{\partial\varpi} \biggr] + \frac{1}{\varpi^2} \frac{\partial^2 f}{\partial\varphi^2} + \frac{\partial^2 f}{\partial z^2} ;
</math><br />
</math>
</td>
</tr>


<tr>
<td align="right">
<math>
(\vec{v}\cdot\nabla)f
</math>
</td>
<td align="center">
=
</td>
<td align="left">
<math>
<math>
\nabla^2 f = \frac{1}{\varpi} \frac{\partial }{\partial\varpi} \biggl[ \varpi \frac{\partial f}{\partial\varpi} \biggr] + \frac{1}{\varpi^2} \frac{\partial^2 f}{\partial\varphi^2} + \frac{\partial^2 f}{\partial z^2} ;
\biggl[ v_\varpi \frac{\partial f}{\partial\varpi} \biggr] +  
</math><br />
\biggl[ \frac{v_\varphi}{\varpi} \frac{\partial f}{\partial\varphi} \biggr] +  
\biggl[ v_z \frac{\partial f}{\partial z} \biggr] ;
</math>
</td>
</tr>


<tr>
<td align="right">
<math>
\nabla \cdot \vec{F}
</math>
</td>
<td align="center">
=
</td>
<td align="left">
<math>
<math>
\frac{d}{dt}\vec{F} = {\hat{e}}_\varpi \frac{dF_\varpi}{dt} + F_\varpi \frac{d{\hat{e}}_\varpi}{dt} + {\hat{e}}_\varphi \frac{dF_\varphi}{dt} + F_\varphi \frac{d{\hat{e}}_\varphi}{dt} + {\hat{e}}_z \frac{dF_z}{dt} + F_z \frac{d{\hat{e}}_z}{dt}
\frac{1}{\varpi} \frac{\partial (\varpi F_\varpi)}{\partial\varpi} + \frac{1}{\varpi} \frac{\partial F_\varphi}{\partial\varphi} + \frac{\partial F_z}{\partial z} ;
</math><br />
</math>
</td>
</tr>


<tr>
<td align="right">
<math>
<math>
= {\hat{e}}_\varpi \biggl[ \frac{dF_\varpi}{dt} -  F_\varphi \dot\varphi  \biggr] + {\hat{e}}_\varphi \biggl[ \frac{dF_\varphi}{dt} + F_\varpi \dot\varphi \biggr]  + {\hat{e}}_z \frac{dF_z}{dt}  
\frac{d}{dt}\vec{F}  
</math>
</math>
</td>
<td align="center">
=
</td>
<td align="left">
<math>
{\hat{e}}_\varpi \frac{dF_\varpi}{dt} + F_\varpi \frac{d{\hat{e}}_\varpi}{dt} + {\hat{e}}_\varphi \frac{dF_\varphi}{dt} + F_\varphi \frac{d{\hat{e}}_\varphi}{dt} + {\hat{e}}_z \frac{dF_z}{dt} + F_z \frac{d{\hat{e}}_z}{dt}
</math>
</td>
</tr>


</div>
<tr>
<td align="right">
&nbsp;
</td>
<td align="center">
=
</td>
<td align="left">
<math>
{\hat{e}}_\varpi \biggl[ \frac{dF_\varpi}{dt} -  F_\varphi \dot\varphi  \biggr] + {\hat{e}}_\varphi \biggl[ \frac{dF_\varphi}{dt} + F_\varpi \dot\varphi \biggr]  + {\hat{e}}_z \frac{dF_z}{dt} ;
</math>
</td>
</tr>


<li>Setting (who know what?)
<tr>
<td align="right">
<math>
(\vec{v}\cdot\nabla)\vec{F}
</math>
</td>
<td align="center">
=
</td>
<td align="left">
<math>
{\hat{e}}_\varpi \biggl[ (\vec{v}\cdot\nabla)F_\varpi -  F_\varphi \dot\varphi  \biggr] +
{\hat{e}}_\varphi \biggl[ (\vec{v}\cdot\nabla)F_\varphi + F_\varpi \dot\varphi \biggr]  +
{\hat{e}}_z \biggl[ (\vec{v}\cdot\nabla)F_z \biggr] .
</math>
</td>
</tr>
</table>


<li>Setting to zero all derivatives that are taken with respect to the angular coordinate <math>\varphi</math>:  
<li>Setting to zero all derivatives that are taken with respect to the angular coordinate <math>\varphi</math>:  
<table align="center" border="0" cellpadding="5">
<tr>
<td colspan="3" align="center">
<font color="#770000" size="+1"><b>2D Operators, Assuming Axisymmetric Conditions</b></font>
</td>
</tr>
<tr>
<td align="right">
<math>
\nabla f
</math>
</td>
<td align="center">
=
</td>
<td align="left">
<math>
{\hat{e}}_\varpi \biggl[ \frac{\partial f}{\partial\varpi} \biggr] + {\hat{e}}_z \biggl[ \frac{\partial f}{\partial z} \biggr] ;
</math>
</td>
</tr>
<tr>
<td align="right">
<math>
\nabla^2 f
</math>
</td>
<td align="center">
=
</td>
<td align="left">
<math>
\frac{1}{\varpi} \frac{\partial }{\partial\varpi} \biggl[ \varpi \frac{\partial f}{\partial\varpi} \biggr] +  \frac{\partial^2 f}{\partial z^2} ;
</math>
</td>
</tr>
<tr>
<td align="right">
<math>
(\vec{v}\cdot\nabla)f
</math>
</td>
<td align="center">
=
</td>
<td align="left">
<math>
\biggl[ v_\varpi \frac{\partial f}{\partial\varpi} \biggr] + 
\biggl[ v_z \frac{\partial f}{\partial z} \biggr] ;
</math>
</td>
</tr>
<tr>
<td align="right">
<math>
\nabla \cdot \vec{F}
</math>
</td>
<td align="center">
=
</td>
<td align="left">
<math>
\frac{1}{\varpi} \frac{\partial (\varpi F_\varpi)}{\partial\varpi} +  \frac{\partial F_z}{\partial z} ;
</math>
</td>
</tr>
<tr>
<td align="right">
<math>
\frac{d}{dt}\vec{F}
</math>
</td>
<td align="center">
=
</td>
<td align="left">
<math>
{\hat{e}}_\varpi \frac{dF_\varpi}{dt} + F_\varpi \frac{d{\hat{e}}_\varpi}{dt} + {\hat{e}}_\varphi \frac{dF_\varphi}{dt} + F_\varphi \frac{d{\hat{e}}_\varphi}{dt} + {\hat{e}}_z \frac{dF_z}{dt} + F_z \frac{d{\hat{e}}_z}{dt}
</math>
</td>
</tr>
<tr>
<td align="right">
&nbsp;
</td>
<td align="center">
=
</td>
<td align="left">
<math>
{\hat{e}}_\varpi \biggl[ \frac{dF_\varpi}{dt} -  F_\varphi \dot\varphi  \biggr] + {\hat{e}}_\varphi \biggl[ \frac{dF_\varphi}{dt} + F_\varpi \dot\varphi \biggr]  + {\hat{e}}_z \frac{dF_z}{dt} ;
</math>
</td>
</tr>
<tr>
<td align="right">
<math>
(\vec{v}\cdot\nabla)\vec{F}
</math>
</td>
<td align="center">
=
</td>
<td align="left">
<math>
{\hat{e}}_\varpi \biggl[ (\vec{v}\cdot\nabla)F_\varpi -  F_\varphi \dot\varphi  \biggr] +
{\hat{e}}_\varphi \biggl[ (\vec{v}\cdot\nabla)F_\varphi + F_\varpi \dot\varphi \biggr]  +
{\hat{e}}_z \biggl[ (\vec{v}\cdot\nabla)F_z \biggr] .
</math>
</td>
</tr>
</table>
<li>Setting (who know what?)
</ol>
</ol>



Revision as of 23:06, 4 April 2010

Whitworth's (1981) Isothermal Free-Energy Surface
|   Tiled Menu   |   Tables of Content   |  Banner Video   |  Tohline Home Page   |

Axisymmetric Configurations

If the self-gravitating configuration that we wish to construct is axisymmetric, then the coupled set of multidimensional, partial differential equations that serve as our principal governing equations can be simplified to a coupled set of two-dimensional PDEs. Here we accomplish this by,

  1. Expressing the vector time-derivative and each of the multidimensional spatial operators in cylindrical coordinates (<math>\varpi, \varphi, z</math>) (see, for example, the Wikipedia discussion of vector calculus formulae in cylindrical coordinates):

    3D Operators in Cylindrical Coordinates

    <math> \nabla f </math>

    =

    <math> {\hat{e}}_\varpi \biggl[ \frac{\partial f}{\partial\varpi} \biggr] + {\hat{e}}_\varphi \biggl[ \frac{1}{\varpi} \frac{\partial f}{\partial\varphi} \biggr] + {\hat{e}}_z \biggl[ \frac{\partial f}{\partial z} \biggr] ; </math>

    <math> \nabla^2 f </math>

    =

    <math> \frac{1}{\varpi} \frac{\partial }{\partial\varpi} \biggl[ \varpi \frac{\partial f}{\partial\varpi} \biggr] + \frac{1}{\varpi^2} \frac{\partial^2 f}{\partial\varphi^2} + \frac{\partial^2 f}{\partial z^2} ; </math>

    <math> (\vec{v}\cdot\nabla)f </math>

    =

    <math> \biggl[ v_\varpi \frac{\partial f}{\partial\varpi} \biggr] + \biggl[ \frac{v_\varphi}{\varpi} \frac{\partial f}{\partial\varphi} \biggr] + \biggl[ v_z \frac{\partial f}{\partial z} \biggr] ; </math>

    <math> \nabla \cdot \vec{F} </math>

    =

    <math> \frac{1}{\varpi} \frac{\partial (\varpi F_\varpi)}{\partial\varpi} + \frac{1}{\varpi} \frac{\partial F_\varphi}{\partial\varphi} + \frac{\partial F_z}{\partial z} ; </math>

    <math> \frac{d}{dt}\vec{F} </math>

    =

    <math> {\hat{e}}_\varpi \frac{dF_\varpi}{dt} + F_\varpi \frac{d{\hat{e}}_\varpi}{dt} + {\hat{e}}_\varphi \frac{dF_\varphi}{dt} + F_\varphi \frac{d{\hat{e}}_\varphi}{dt} + {\hat{e}}_z \frac{dF_z}{dt} + F_z \frac{d{\hat{e}}_z}{dt} </math>

     

    =

    <math> {\hat{e}}_\varpi \biggl[ \frac{dF_\varpi}{dt} - F_\varphi \dot\varphi \biggr] + {\hat{e}}_\varphi \biggl[ \frac{dF_\varphi}{dt} + F_\varpi \dot\varphi \biggr] + {\hat{e}}_z \frac{dF_z}{dt} ; </math>

    <math> (\vec{v}\cdot\nabla)\vec{F} </math>

    =

    <math> {\hat{e}}_\varpi \biggl[ (\vec{v}\cdot\nabla)F_\varpi - F_\varphi \dot\varphi \biggr] + {\hat{e}}_\varphi \biggl[ (\vec{v}\cdot\nabla)F_\varphi + F_\varpi \dot\varphi \biggr] + {\hat{e}}_z \biggl[ (\vec{v}\cdot\nabla)F_z \biggr] . </math>

  2. Setting to zero all derivatives that are taken with respect to the angular coordinate <math>\varphi</math>:

    2D Operators, Assuming Axisymmetric Conditions

    <math> \nabla f </math>

    =

    <math> {\hat{e}}_\varpi \biggl[ \frac{\partial f}{\partial\varpi} \biggr] + {\hat{e}}_z \biggl[ \frac{\partial f}{\partial z} \biggr] ; </math>

    <math> \nabla^2 f </math>

    =

    <math> \frac{1}{\varpi} \frac{\partial }{\partial\varpi} \biggl[ \varpi \frac{\partial f}{\partial\varpi} \biggr] + \frac{\partial^2 f}{\partial z^2} ; </math>

    <math> (\vec{v}\cdot\nabla)f </math>

    =

    <math> \biggl[ v_\varpi \frac{\partial f}{\partial\varpi} \biggr] + \biggl[ v_z \frac{\partial f}{\partial z} \biggr] ; </math>

    <math> \nabla \cdot \vec{F} </math>

    =

    <math> \frac{1}{\varpi} \frac{\partial (\varpi F_\varpi)}{\partial\varpi} + \frac{\partial F_z}{\partial z} ; </math>

    <math> \frac{d}{dt}\vec{F} </math>

    =

    <math> {\hat{e}}_\varpi \frac{dF_\varpi}{dt} + F_\varpi \frac{d{\hat{e}}_\varpi}{dt} + {\hat{e}}_\varphi \frac{dF_\varphi}{dt} + F_\varphi \frac{d{\hat{e}}_\varphi}{dt} + {\hat{e}}_z \frac{dF_z}{dt} + F_z \frac{d{\hat{e}}_z}{dt} </math>

     

    =

    <math> {\hat{e}}_\varpi \biggl[ \frac{dF_\varpi}{dt} - F_\varphi \dot\varphi \biggr] + {\hat{e}}_\varphi \biggl[ \frac{dF_\varphi}{dt} + F_\varpi \dot\varphi \biggr] + {\hat{e}}_z \frac{dF_z}{dt} ; </math>

    <math> (\vec{v}\cdot\nabla)\vec{F} </math>

    =

    <math> {\hat{e}}_\varpi \biggl[ (\vec{v}\cdot\nabla)F_\varpi - F_\varphi \dot\varphi \biggr] + {\hat{e}}_\varphi \biggl[ (\vec{v}\cdot\nabla)F_\varphi + F_\varpi \dot\varphi \biggr] + {\hat{e}}_z \biggl[ (\vec{v}\cdot\nabla)F_z \biggr] . </math>


  3. Setting (who know what?)


After making this simplification, our governing equations become,

Equation of Continuity

<math>\frac{d\rho}{dt} + \rho \biggl[\frac{1}{r^2}\frac{d(r^2 v_r)}{dr} \biggr] = 0 </math>


Euler Equation

<math>\frac{dv_r}{dt} = - \frac{1}{\rho}\frac{dP}{dr} - \frac{d\Phi}{dr} </math>


Adiabatic Form of the
First Law of Thermodynamics

<math>~\frac{d\epsilon}{dt} + P \frac{d}{dt} \biggl(\frac{1}{\rho}\biggr) = 0</math>


Poisson Equation

<math>\frac{1}{r^2} \biggl[\frac{d }{dr} \biggl( r^2 \frac{d \Phi}{dr} \biggr) \biggr] = 4\pi G \rho </math>

See Also

Whitworth's (1981) Isothermal Free-Energy Surface

© 2014 - 2021 by Joel E. Tohline
|   H_Book Home   |   YouTube   |
Appendices: | Equations | Variables | References | Ramblings | Images | myphys.lsu | ADS |
Recommended citation:   Tohline, Joel E. (2021), The Structure, Stability, & Dynamics of Self-Gravitating Fluids, a (MediaWiki-based) Vistrails.org publication, https://www.vistrails.org/index.php/User:Tohline/citation