Difference between revisions of "User:Tohline/PGE/RotatingFrame"

From VistrailsWiki
Jump to navigation Jump to search
(→‎Rotating Reference Frame: Transform continuity equation)
(force TOC)
Line 1: Line 1:
<!-- __FORCETOC__ will force the creation of a Table of Contents -->
__FORCETOC__
<!-- __NOTOC__ -->
<!-- __NOTOC__ -->
{{LSU_HBook_header}}
{{LSU_HBook_header}}
Line 40: Line 40:




==Continuity Equation (rotating reference frame)==
==Continuity Equation (rotating frame)==
Applying these transformations to the standard, inertial-frame representations of the continuity equation presented [http://www.vistrails.org/index.php/User:Tohline/PGE/ConservingMass#Continuity_Equation elsewhere], we obtain the:
Applying these transformations to the standard, inertial-frame representations of the continuity equation presented [http://www.vistrails.org/index.php/User:Tohline/PGE/ConservingMass#Continuity_Equation elsewhere], we obtain the:


Line 64: Line 64:




==Euler Equation (rotating reference frame)==
==Euler Equation (rotating frame)==
Applying these transformations to the standard, inertial-frame representations of the Euler equation presented [http://www.vistrails.org/index.php/User:Tohline/PGE/Euler#Euler_Equation elsewhere], we obtain the:
Applying these transformations to the standard, inertial-frame representations of the Euler equation presented [http://www.vistrails.org/index.php/User:Tohline/PGE/Euler#Euler_Equation elsewhere], we obtain the:



Revision as of 21:51, 20 March 2010

Whitworth's (1981) Isothermal Free-Energy Surface
|   Tiled Menu   |   Tables of Content   |  Banner Video   |  Tohline Home Page   |

NOTE to Eric Hirschmann & David Neilsen... I have move the earlier contents of this page to a new Wiki location called Compressible Riemann Ellipsoids.



Rotating Reference Frame

At times, it can be useful to view the motion of a fluid from a frame of reference that is rotating with a uniform (i.e., time-independent) angular velocity <math>\Omega_f</math>. In order to transform any one of the principal governing equations from the inertial reference frame to such a rotating reference frame, we must specify the orientation as well as the magnitude of the angular velocity vector about which the frame is spinning, <math>{\vec\Omega}_f</math>; and the <math>d/dt</math> operator, which denotes Lagrangian time-differentiation in the interial frame, must everywhere be replaced as follows:

<math> \biggl[\frac{d}{dt} \biggr]_{inertial} \rightarrow \biggl[\frac{d}{dt} \biggr]_{rot} + {\vec{\Omega}}_f \times . </math>

Performing this transformation implies, for example, that

<math> \vec{v}_{inertial} = \vec{v}_{rot} + {\vec{\Omega}}_f \times \vec{x} , </math>

and,

<math> \biggl[ \frac{d\vec{v}}{dt}\biggr]_{inertial} = \biggl[ \frac{d\vec{v}}{dt}\biggr]_{rot} + 2{\vec{\Omega}}_f \times {\vec{v}}_{rot} + {\vec{\Omega}}_f \times ({\vec{\Omega}}_f \times \vec{x}) </math>

<math> = \biggl[ \frac{d\vec{v}}{dt}\biggr]_{rot} + 2{\vec{\Omega}}_f \times {\vec{v}}_{rot} - \frac{1}{2} \nabla \biggl[ |{\vec{\Omega}}_f \times \vec{x}|^2 \biggr] </math>

(If we were to allow <math>{\vec\Omega}_f</math> to be a function of time, an additional term involving the time-derivative of <math>{\vec\Omega}_f</math> also would appear on the right-hand-side of these last expressions; see, for example, Eq.~1D-42 in BT87.)


Continuity Equation (rotating frame)

Applying these transformations to the standard, inertial-frame representations of the continuity equation presented elsewhere, we obtain the:

Lagrangian Representation
of the Continuity Equation
as viewed from a Rotating Reference Frame

<math>\biggl[ \frac{d\rho}{dt} \biggr]_{rot} + \rho \nabla \cdot {\vec{v}}_{rot} = 0</math> ;



Eulerian Representation
of the Continuity Equation
as viewed from a Rotating Reference Frame

<math>\biggl[ \frac{\partial\rho}{\partial t} \biggr]_{rot} + \nabla \cdot (\rho {\vec{v}}_{rot}) = 0</math> .


Euler Equation (rotating frame)

Applying these transformations to the standard, inertial-frame representations of the Euler equation presented elsewhere, we obtain the:

Lagrangian Representation
of the Euler Equation
as viewed from a Rotating Reference Frame

<math>\biggl[ \frac{d\vec{v}}{dt}\biggr]_{rot} = - \frac{1}{\rho} \nabla P - \nabla \Phi - 2{\vec{\Omega}}_f \times {\vec{v}}_{rot} - {\vec{\Omega}}_f \times ({\vec{\Omega}}_f \times \vec{x})</math> ;



Eulerian Representation
of the Euler Equation
as viewed from a Rotating Reference Frame

<math>\biggl[\frac{\partial\vec{v}}{\partial t}\biggr]_{rot} + ({\vec{v}}_{rot}\cdot \nabla) {\vec{v}}_{rot}= - \frac{1}{\rho} \nabla P - \nabla \biggl[\Phi - \frac{1}{2}|{\vec{\Omega}}_f \times \vec{x}|^2 \biggr] - 2{\vec{\Omega}}_f \times {\vec{v}}_{rot} </math> ;



Euler Equation
written in terms of the Vorticity and
as viewed from a Rotating Reference Frame

<math>\biggl[\frac{\partial\vec{v}}{\partial t}\biggr]_{rot} + ({\vec{\zeta}}_{rot}+2{\vec\Omega}_f) \times {\vec{v}}_{rot}= - \frac{1}{\rho} \nabla P - \nabla \biggl[\Phi + \frac{1}{2}v_{rot}^2 - \frac{1}{2}|{\vec{\Omega}}_f \times \vec{x}|^2 \biggr]</math> .



Whitworth's (1981) Isothermal Free-Energy Surface

© 2014 - 2021 by Joel E. Tohline
|   H_Book Home   |   YouTube   |
Appendices: | Equations | Variables | References | Ramblings | Images | myphys.lsu | ADS |
Recommended citation:   Tohline, Joel E. (2021), The Structure, Stability, & Dynamics of Self-Gravitating Fluids, a (MediaWiki-based) Vistrails.org publication, https://www.vistrails.org/index.php/User:Tohline/citation