Difference between revisions of "User:Tohline/PGE/RotatingFrame"
(Begin detailed example) |
(Reorganize and expand discussion for clarity) |
||
Line 48: | Line 48: | ||
<div align="center"> | <div align="center"> | ||
<math> | <math> | ||
\nabla\cdot(\rho^* {\vec{v}}^*) = 0 | \nabla\cdot(\rho^* {\vec{v}}^*) = 0 ; | ||
</math> | </math> | ||
<math> | <math> | ||
\nabla\times [({\vec{v}}^*\cdot \nabla){\vec{v}}^* | \nabla\times \biggl[({\vec{v}}^*\cdot \nabla){\vec{v}}^* +2 {\vec{\omega}}^* \times {\vec{v}}^* \biggr] = 0 . | ||
</math> | </math> | ||
</div> | </div> | ||
The first of these is a scalar equation; the second is a vector equation and it will presumably provide two useful scalar equations (constraining the two components of <math>\vec{ | The first of these is a scalar equation; the second is a vector equation and it will presumably provide two useful scalar equations (perhaps constraining the two components of <math>{\vec{v}}^*</math> that are perpendicular to <math>\hat{k}</math> ?). Since the left-hand-side of the second equation is obviously nonlinear in the velocity, we may have to linearize this set of equations and look for small "corrections" <math>\delta\vec{v}</math> to an initial "guess" for the velocity field, such as the flow field in Riemann S-type ellipsoids, which is also the flow-field adopted by Ou (2006). | ||
===Step #3:=== | ===Step #3:=== | ||
Line 67: | Line 67: | ||
</div> | </div> | ||
== | ==Example of Riemann S-Type Ellipsoids== | ||
===Preamble | ===Preamble=== | ||
First, set <math>{\vec{\omega}} = \hat{k}\omega</math> and <math>v_z = 0</math>, and write out the Cartesian components of the vector, | |||
<div align="center"> | |||
<math> | |||
\vec{A} \equiv ({\vec{v}}\cdot \nabla){\vec{v}} +2 {\vec{\omega}} \times {\vec{v}} . | |||
</math> | |||
</div> | |||
The components are: | |||
<div align="left"> | |||
<math> | |||
~~~~~\hat{i}:~~~~~A_x = v_x \frac{\partial v_x}{\partial x} + v_y \frac{\partial v_x}{\partial y} -2\omega v_y ; | |||
</math><br /> | |||
<math> | |||
~~~~~\hat{j}:~~~~~A_y = v_x \frac{\partial v_y}{\partial x} + v_y \frac{\partial v_y}{\partial y} +2\omega v_x ; | |||
</math><br /> | |||
<math> | |||
~~~~~\hat{j}:~~~~~A_z = 0 . | |||
</math> | |||
</div> | |||
The curl of <math>\vec{A}</math> (needed in Step #2, above) produces a vector with the following three Cartesian components: | |||
<div align="left"> | |||
<math> | |||
~~~~~\hat{i}:~~~~~[\nabla\times\vec{A}]_x = \frac{\partial}{\partial y} \biggl[0 \biggr] - \frac{\partial}{\partial z} \biggl[ v_x \frac{\partial v_y}{\partial x} + v_y \frac{\partial v_y}{\partial y} +2\omega v_x \biggr] ; | |||
</math><br /> | |||
<math> | |||
~~~~~\hat{j}:~~~~~[\nabla\times\vec{A}]_y = \frac{\partial}{\partial z} \biggl[ v_x \frac{\partial v_x}{\partial x} + v_y \frac{\partial v_x}{\partial y} -2\omega v_y \biggr] - \frac{\partial}{\partial x} \biggl[0 \biggr] ; | |||
</math><br /> | |||
<math> | |||
~~~~~\hat{j}:~~~~~[\nabla\times\vec{A}]_z = \frac{\partial}{\partial x} \biggl[ v_x \frac{\partial v_y}{\partial x} + v_y \frac{\partial v_y}{\partial y} +2\omega v_x \biggr] - \frac{\partial}{\partial y} \biggl[ v_x \frac{\partial v_x}{\partial x} + v_y \frac{\partial v_x}{\partial y} -2\omega v_y \biggr] . | |||
</math> | |||
</div> | |||
And the divergence of <math>\vec{A}</math> (providing the right-hand-side of the Poisson-like equation in Step #3, above) generates: | |||
<div align="center"> | |||
<math> | |||
\nabla\cdot\vec{A} = \frac{\partial}{\partial x} \biggl[ v_x \frac{\partial v_x}{\partial x} + v_y \frac{\partial v_x}{\partial y} -2\omega v_y \biggr] + \frac{\partial}{\partial y} \biggl[ v_x \frac{\partial v_y}{\partial x} + v_y \frac{\partial v_y}{\partial y} +2\omega v_x \biggr] + \frac{\partial}{\partial z} \biggl[ 0 \biggr] . | |||
</math> | |||
</div> | |||
{{LSU_HBook_footer}} | {{LSU_HBook_footer}} |
Revision as of 20:46, 12 March 2010
| Tiled Menu | Tables of Content | Banner Video | Tohline Home Page | |
Compressible Analogs of Riemann S-Type Ellipsoids
Here we attempt to develop a self-consistent-field type, iterative technique that will permit the construction of steady-state structures that are compressible analogs of Riemann S-Type (incompressible) ellipsoids. We will build upon the recent work of Ou (2006).
Standard Steady-State Governing Relations
As viewed from a rotating frame of reference and written in Eulerian form, the steady-state version of the three-dimensional principal governing equations are:
<math> \nabla\cdot(\rho \vec{v}) = 0 </math>
<math> (\vec{v}\cdot \nabla)\vec{v} = -\nabla \biggl[H + \Phi -\frac{1}{2}\omega^2 R^2 \biggr] -2\vec{\omega}\times\vec{v} </math>
<math> \nabla^2 \Phi = 4\pi G \rho </math>
Proposed Solution Strategy
Preamble:
Specify the three "polar" boundary locations, <math>a, b,</math> and <math>c</math>; specify the direction but not the magnitude of the rotating frame's angular velocity, for example, <math>(\vec{\omega}/\omega) = \hat{k}</math>; pin the central density to the value <math>\rho_c = 1</math>. Define the following dimensionless density, velocity vector, angular velocity, enthalpy, gravitational potential, and position vector:
<math> \rho^* \equiv \frac{\rho}{\rho_c} ; ~~~~~{\vec{v}}^* \equiv \frac{\vec{v}}{[a^2G\rho_c]^{1/2}} ; ~~~~~\omega^* \equiv \frac{\omega}{[G\rho_c]^{1/2}} ; </math>
<math> H^* \equiv \frac{H}{[a^2G\rho_c]} ; ~~~~~\Phi^* \equiv \frac{\Phi}{[a^2G\rho_c]} ; ~~~~~{\vec{x}}^* \equiv \frac{\vec{x}}{a} . </math>
From here, on, spatial operators are assumed to be in terms of the dimensionless coordinates.
Step #1:
Guess a 3D density distribution — such as a uniform-density ellipsoid, or one of the converged models from Ou (2006) — that conforms to a selected set of positional boundary conditions, that is, where the density goes to zero along the three principal axes at <math>x=a</math>, <math>y = b</math>, and <math>z = c</math>. Solve the Poisson equation in order to derive values for <math>\Phi</math> everywhere inside and on the surface of the 3D configuration:
<math> \nabla^2 \Phi^* = 4\pi \rho^* . </math>
Step #2:
Use the continuity equation and the curl of the Euler equation to numerically derive the structure but not the overall magnitude of the velocity flow-field throughout the 3D configuration. Take advantage of the fact that the direction, <math>(\vec{\omega}/\omega)</math>, has been specified; and assume that the 3D density distribution is known. Here are the relevant equations:
<math> \nabla\cdot(\rho^* {\vec{v}}^*) = 0 ; </math>
<math> \nabla\times \biggl[({\vec{v}}^*\cdot \nabla){\vec{v}}^* +2 {\vec{\omega}}^* \times {\vec{v}}^* \biggr] = 0 . </math>
The first of these is a scalar equation; the second is a vector equation and it will presumably provide two useful scalar equations (perhaps constraining the two components of <math>{\vec{v}}^*</math> that are perpendicular to <math>\hat{k}</math> ?). Since the left-hand-side of the second equation is obviously nonlinear in the velocity, we may have to linearize this set of equations and look for small "corrections" <math>\delta\vec{v}</math> to an initial "guess" for the velocity field, such as the flow field in Riemann S-type ellipsoids, which is also the flow-field adopted by Ou (2006).
Step #3:
Take the divergence of the Euler equation and use it to solve for <math>H</math> throughout the configuration, given the structure of the flow-field obtained in Step #2. Boundary conditions at the three "poles" of the configuration may suffice to uniquely determine <math>\omega</math>, the overall normalization factor for the flow-field <math>\vec\zeta</math> — hopefully this is analogous to solving for the vorticity parameter <math>\lambda</math> in Ou (2006) — and the Bernoulli constant (or something equivalent). The relevant "Poisson"-like equation is:
<math> \nabla^2 \biggl[H^* + \Phi^* -\frac{1}{2}(\omega^*)^2 \biggl(\frac{R}{a}\biggr)^2 \biggr] = - \nabla\cdot [({\vec{v}}^*\cdot \nabla){\vec{v}}^* + 2 {\vec{\omega}}^*\times {\vec{v}}^* ] . </math>
Example of Riemann S-Type Ellipsoids
Preamble
First, set <math>{\vec{\omega}} = \hat{k}\omega</math> and <math>v_z = 0</math>, and write out the Cartesian components of the vector,
<math> \vec{A} \equiv ({\vec{v}}\cdot \nabla){\vec{v}} +2 {\vec{\omega}} \times {\vec{v}} . </math>
The components are:
<math>
~~~~~\hat{i}:~~~~~A_x = v_x \frac{\partial v_x}{\partial x} + v_y \frac{\partial v_x}{\partial y} -2\omega v_y ;
</math>
<math>
~~~~~\hat{j}:~~~~~A_y = v_x \frac{\partial v_y}{\partial x} + v_y \frac{\partial v_y}{\partial y} +2\omega v_x ;
</math>
<math>
~~~~~\hat{j}:~~~~~A_z = 0 .
</math>
The curl of <math>\vec{A}</math> (needed in Step #2, above) produces a vector with the following three Cartesian components:
<math>
~~~~~\hat{i}:~~~~~[\nabla\times\vec{A}]_x = \frac{\partial}{\partial y} \biggl[0 \biggr] - \frac{\partial}{\partial z} \biggl[ v_x \frac{\partial v_y}{\partial x} + v_y \frac{\partial v_y}{\partial y} +2\omega v_x \biggr] ;
</math>
<math>
~~~~~\hat{j}:~~~~~[\nabla\times\vec{A}]_y = \frac{\partial}{\partial z} \biggl[ v_x \frac{\partial v_x}{\partial x} + v_y \frac{\partial v_x}{\partial y} -2\omega v_y \biggr] - \frac{\partial}{\partial x} \biggl[0 \biggr] ;
</math>
<math>
~~~~~\hat{j}:~~~~~[\nabla\times\vec{A}]_z = \frac{\partial}{\partial x} \biggl[ v_x \frac{\partial v_y}{\partial x} + v_y \frac{\partial v_y}{\partial y} +2\omega v_x \biggr] - \frac{\partial}{\partial y} \biggl[ v_x \frac{\partial v_x}{\partial x} + v_y \frac{\partial v_x}{\partial y} -2\omega v_y \biggr] .
</math>
And the divergence of <math>\vec{A}</math> (providing the right-hand-side of the Poisson-like equation in Step #3, above) generates:
<math> \nabla\cdot\vec{A} = \frac{\partial}{\partial x} \biggl[ v_x \frac{\partial v_x}{\partial x} + v_y \frac{\partial v_x}{\partial y} -2\omega v_y \biggr] + \frac{\partial}{\partial y} \biggl[ v_x \frac{\partial v_y}{\partial x} + v_y \frac{\partial v_y}{\partial y} +2\omega v_x \biggr] + \frac{\partial}{\partial z} \biggl[ 0 \biggr] . </math>
© 2014 - 2021 by Joel E. Tohline |