Difference between revisions of "User:Tohline/SR/PressureCombinations"

From VistrailsWiki
Jump to navigation Jump to search
(→‎Simplifications: Expand discussion)
(→‎Simplifications: Clarify and extend presentation)
Line 80: Line 80:


===Simplifications===
===Simplifications===
Note, first, that {{User:Tohline/Math/C_ProtonMass}}/{{User:Tohline/Math/C_AtomicMassUnit}} &nbsp;<math>\approx</math> 1 and, for fully ionized gases, the ratio {{User:Tohline/Math/MP_ElectronMolecularWeight}}/{{User:Tohline/Math/MP_MeanMolecularWeight}} is of order unity &#8212; more precisely, <math>1 < </math> {{User:Tohline/Math/MP_ElectronMolecularWeight}}/{{User:Tohline/Math/MP_MeanMolecularWeight}} <math>\le 2</math>.  For simplicity, then, we can assume that the numerical coefficient of the first term in our expression for <math>p_\mathrm{total}</math> is 8, and we conclude that,
Note, first, that {{User:Tohline/Math/C_ProtonMass}}/{{User:Tohline/Math/C_AtomicMassUnit}} &nbsp;<math>\approx</math> 1 and, for fully ionized gases, the ratio {{User:Tohline/Math/MP_ElectronMolecularWeight}}/{{User:Tohline/Math/MP_MeanMolecularWeight}} is of order unity &#8212; more precisely, the ratio of these two molecular weights falls within the narrow range <math>1 < </math> {{User:Tohline/Math/MP_ElectronMolecularWeight}}/{{User:Tohline/Math/MP_MeanMolecularWeight}} <math>\le 2</math>.  For simplicity, then, we can assume that the numerical coefficient of the first term in our expression for <math>p_\mathrm{total}</math> is approximately 8, so the ratio of radiation pressure to gas pressure is,
<div align="center">
<div align="center">
<math>
<math>
Line 100: Line 100:
where <math>T_7</math> is the temperature expressed in units of <math>10^7</math> K and <math>\rho_1</math> is the matter density expressed in units of <math>\mathrm{g~cm}^{-3}</math>.
where <math>T_7</math> is the temperature expressed in units of <math>10^7</math> K and <math>\rho_1</math> is the matter density expressed in units of <math>\mathrm{g~cm}^{-3}</math>.


Second, note that the function <math>F(\chi)</math> can be written in simpler form when examining regions of very low or very high matter densities.  Specifically, in the limit <math>\chi \ll 1</math>,
 
Second, note that the function <math>F(\chi)</math> can be written in a simpler form when examining regions of either very low or very high matter densities.  Specifically (see, for example, various discussions in the "parallel references" cited in conjunction with this equation of state in the accompanying [http://www.vistrails.org/index.php/User:Tohline/Appendix/Equation_templates#EOS Appendix of Key Equations]), in the limit <math>\chi \ll 1</math>,
<div align="center">
<div align="center">
<math>
<math>

Revision as of 21:32, 28 February 2010

Whitworth's (1981) Isothermal Free-Energy Surface
|   Tiled Menu   |   Tables of Content   |  Banner Video   |  Tohline Home Page   |

Total Pressure

In our overview of equations of state, we identified analytic expressions for the pressure of an ideal gas, <math>P_\mathrm{gas}</math>, electron degeneracy pressure, <math>P_\mathrm{deg}</math>, and radiation pressure, <math>P_\mathrm{rad}</math>. Rather than considering these equations of state one at a time, in general we should consider the contributions to the pressure that are made by all three of these equations of state simultaneously. That is, we should examine the total pressure,

<math> P_\mathrm{total} = P_\mathrm{gas} + P_\mathrm{deg} + P_\mathrm{rad} . </math>

In order to assess which of these three contributions will dominate <math>P_\mathrm{total}</math> in different density and temperature regimes, it is instructive to normalize <math>P_\mathrm{total}</math> to the characteristic Fermi pressure, <math>~A_\mathrm{F}</math>, as defined in the accompanying Variables Appendix. As derived below, this normalized total pressure can be written as,

LSU Key.png

<math>~p_\mathrm{total} = \biggl(\frac{\mu_e m_p}{\bar{\mu} m_u} \biggr) 8 \chi^3 \frac{T}{T_e} + F(\chi) + \frac{8\pi^4}{15} \biggl( \frac{T}{T_e} \biggr)^4</math>

Derivation

We begin by defining the normalized total gas pressure as follows:

<math> p_\mathrm{total} \equiv \frac{1}{A_\mathrm{F}} \biggl[ P_\mathrm{gas} + P_\mathrm{deg} + P_\mathrm{rad} \biggr] . </math>

To derive the expression for <math>p_\mathrm{total}</math> shown in the opening paragraph above, we begin by normalizing each component pressure independently.

Normalized Degenerate Electron Pressure

This normalization is trivial. Given the original expression for the pressure due to a degenerate electron gas (or a zero-temperature Fermi gas),

LSU Key.png

<math>~P_\mathrm{deg} = A_\mathrm{F} F(\chi) </math>

where:  <math>F(\chi) \equiv \chi(2\chi^2 - 3)(\chi^2 + 1)^{1/2} + 3\sinh^{-1}\chi</math>

and:   

<math>\chi \equiv (\rho/B_\mathrm{F})^{1/3}</math>

we see that,

<math> \frac{P_\mathrm{deg}}{A_\mathrm{F}} = F(\chi) . </math>

Normalized Ideal-Gas Pressure

Given the original expression for the pressure of an ideal gas,

LSU Key.png

<math>~P_\mathrm{gas} = \frac{\Re}{\bar{\mu}} \rho T</math>

along with the definitions of the physical constants, <math>~\Re</math>, <math>~A_\mathrm{F}</math>, and <math>~B_\mathrm{F}</math> provided in the accompanying Variables Appendix, we can write,

<math> \frac{P_\mathrm{gas}}{A_\mathrm{F}} = \frac{B_\mathrm{F}}{A_\mathrm{F}} \frac{\Re}{\bar{\mu}} \chi^3 T = \frac{\mu_e}{\bar{\mu}} \biggl[ \chi^3 T \biggr] \frac{8\pi m_p}{3} \biggl( \frac{m_e c}{h} \biggr)^3 \frac{3h^3}{\pi m_e^4 c^5} \biggl(k N_\mathrm{A} \biggr) = \biggl(m_p N_\mathrm{A} \biggr)\frac{\mu_e}{\bar{\mu}} \biggl[8 \chi^3 T \biggr] \frac{k}{ m_e c^2} . </math>

Therefore, letting <math>T_e \equiv m_e c^2/k</math> represent the temperature associated with the rest-mass energy of the electron, the normalized ideal gas pressure is,

<math> \frac{P_\mathrm{gas}}{A_\mathrm{F}} = \biggl(\frac{\mu_e m_p}{\bar{\mu} m_u} \biggr) \biggl[8 \chi^3 \frac{T}{T_e} \biggr] , </math>

where, by definition, the atomic mass unit is, <math>m_u \equiv (1/N_\mathrm{A})~\mathrm{g} = 0.992776 m_p</math>, that is, <math>m_p/m_u = 1.007276</math>.

Normalized Radiation Pressure

Given the original expression for the radiation pressure,

LSU Key.png

<math>~P_\mathrm{rad} = \frac{1}{3} a_\mathrm{rad} T^4</math>

along with the definitions of the physical constants, <math>~A_\mathrm{F}</math>, and <math>~a_\mathrm{rad}</math> provided in the accompanying Variables Appendix, we can write,

<math> \frac{P_\mathrm{rad}}{A_\mathrm{F}} = \biggl( \frac{T^4}{3} \biggr) \frac{a_\mathrm{rad}}{A_\mathrm{F}} = \biggl( \frac{T^4}{3} \biggr) \frac{8\pi^5}{15}\frac{k^4}{(hc)^3} \frac{3h^3}{\pi m_e^4 c^5} = \frac{8\pi^4}{15} \biggl( \frac{T}{T_e} \biggr)^4 . </math>


Discussion

Let's examine which pressure contributions will dominate in various temperature-density regimes.

Simplifications

Note, first, that <math>~m_p</math>/<math>~m_u</math>  <math>\approx</math> 1 and, for fully ionized gases, the ratio <math>~\mu_e</math>/<math>~\bar{\mu}</math> is of order unity — more precisely, the ratio of these two molecular weights falls within the narrow range <math>1 < </math> <math>~\mu_e</math>/<math>~\bar{\mu}</math> <math>\le 2</math>. For simplicity, then, we can assume that the numerical coefficient of the first term in our expression for <math>p_\mathrm{total}</math> is approximately 8, so the ratio of radiation pressure to gas pressure is,

<math> \frac{P_\mathrm{rad}}{P_\mathrm{gas}} \approx \frac{\pi^4}{15} \biggl( \frac{T}{T_e} \biggr)^3 \frac{B_F}{\rho} </math> .

Hence, radiation pressure will dominate over ideal gas pressure in any regime where,

<math> T \gg T_e \biggl[\frac{15}{\pi^4} \biggl(\frac{\rho}{B_F} \biggr) \biggr]^{1/3} </math> ,

that is, whenever,

<math> T_7 \gg 3.2 \biggl[\frac{\rho_1}{\mu_e} \biggr]^{1/3} </math> ,

where <math>T_7</math> is the temperature expressed in units of <math>10^7</math> K and <math>\rho_1</math> is the matter density expressed in units of <math>\mathrm{g~cm}^{-3}</math>.


Second, note that the function <math>F(\chi)</math> can be written in a simpler form when examining regions of either very low or very high matter densities. Specifically (see, for example, various discussions in the "parallel references" cited in conjunction with this equation of state in the accompanying Appendix of Key Equations), in the limit <math>\chi \ll 1</math>,

<math> F(\chi) \approx \frac{8}{5} \chi^5 </math> ;

and in the limit <math>\chi \gg 1</math>,

<math> F(\chi) \approx 2 \chi^4 </math> .

Whitworth's (1981) Isothermal Free-Energy Surface

© 2014 - 2021 by Joel E. Tohline
|   H_Book Home   |   YouTube   |
Appendices: | Equations | Variables | References | Ramblings | Images | myphys.lsu | ADS |
Recommended citation:   Tohline, Joel E. (2021), The Structure, Stability, & Dynamics of Self-Gravitating Fluids, a (MediaWiki-based) Vistrails.org publication, https://www.vistrails.org/index.php/User:Tohline/citation