Difference between revisions of "User:Tohline/SR/PressureCombinations"

From VistrailsWiki
Jump to navigation Jump to search
(Begin discussion of "total pressure")
 
(Add derivation)
Line 17: Line 17:
</div>
</div>


==Derivation==
We begin by defining the normalized total gas pressure as follows:
<div align="center">
<math>
p_\mathrm{total} \equiv \frac{1}{A_\mathrm{F}} \biggl[ P_\mathrm{gas} + P_\mathrm{deg} + P_\mathrm{rad} \biggr] .
</math>
</div>
To derive the expression for <math>p_\mathrm{total}</math> shown in the opening paragraph above, we begin by normalizing each component pressure independently.
===Normalized Degenerate Electron Pressure===
This normalization is trivial.  Given the original expression for the pressure due to a degenerate electron gas (or a zero-temperature Fermi gas),
<div align="center">
{{User:Tohline/Math/EQ_ZTFG01}}
</div>
we see that,
<div align="center">
<math>
\frac{P_\mathrm{deg}}{A_\mathrm{F}} = F(\chi) .
</math>
</div>
===Normalized Ideal-Gas Pressure===
Given the original expression for the pressure of an ideal gas,
<div align="center">
{{User:Tohline/Math/EQ_EOSideal0A}}
</div>
along with the definitions of the physical constants, {{User:Tohline/Math/C_GasConstant}}, {{User:Tohline/Math/C_FermiPressure}}, and {{User:Tohline/Math/C_FermiDensity}} provided in the accompanying [http://www.vistrails.org/index.php/User:Tohline/Appendix/Variables_templates Variables Appendix], we can write,
<div align="center">
<math>
\frac{P_\mathrm{gas}}{A_\mathrm{F}} = \frac{B_\mathrm{F}}{A_\mathrm{F}} \frac{\Re}{\bar{\mu}} \chi^3 T
= \frac{\mu_e}{\bar{\mu}} \biggl[ \chi^3 T \biggr] \frac{8\pi m_p}{3} \biggl( \frac{m_e c}{h} \biggr)^3 \frac{3h^3}{\pi m_e^4 c^5} \biggl(k N_\mathrm{A} \biggr)
= \biggl(m_p N_\mathrm{A} \biggr)\frac{\mu_e}{\bar{\mu}} \biggl[8 \chi^3 T \biggr] \frac{k}{ m_e c^2}  .
</math>
</div>
Therefore, letting <math>T_e \equiv m_e c^2/k</math> represent the temperature associated with the rest-mass energy of the electron, the normalized ideal gas pressure is,
<div align="center">
<math>
\frac{P_\mathrm{gas}}{A_\mathrm{F}}  = \biggl(\frac{\mu_e m_p}{\bar{\mu} m_u} \biggr) \biggl[8 \chi^3 \frac{T}{T_e} \biggr] ,
</math>
</div>
where the atomic mass unit, <math>m_u \equiv 1/N_\mathrm{A}</math>.






{{LSU_HBook_footer}}
{{LSU_HBook_footer}}

Revision as of 23:27, 26 February 2010

Whitworth's (1981) Isothermal Free-Energy Surface
|   Tiled Menu   |   Tables of Content   |  Banner Video   |  Tohline Home Page   |

Total Pressure

In our overview of equations of state that are used to supplement our set of principal governing equations when studying time-dependent problems, we identified analytic expressions for the pressure of an ideal gas, <math>P_\mathrm{gas}</math>, electron degeneracy pressure, <math>P_\mathrm{deg}</math>, and radiation pressure, <math>P_\mathrm{rad}</math>. Rather than considering these equations of state one at a time, in general we should consider the contributions to the pressure that are made by all three of these equations of state simultaneously. That is, we should examine the total pressure,

<math> P_\mathrm{total} = P_\mathrm{gas} + P_\mathrm{deg} + P_\mathrm{rad} . </math>

In order to assess which of these three contributions will dominate <math>P_\mathrm{total}</math> in different density and temperature regimes, it is instructive to normalize <math>P_\mathrm{total}</math> to the characteristic Fermi pressure, <math>~A_\mathrm{F}</math>, as defined in the accompanying Variables Appendix. As derived below, this normalized total pressure can be written as,

LSU Key.png

<math>~p_\mathrm{total} = \biggl(\frac{\mu_e m_p}{\bar{\mu} m_u} \biggr) 8 \chi^3 \frac{T}{T_e} + F(\chi) + \frac{8\pi^4}{15} \biggl( \frac{T}{T_e} \biggr)^4</math>

Derivation

We begin by defining the normalized total gas pressure as follows:

<math> p_\mathrm{total} \equiv \frac{1}{A_\mathrm{F}} \biggl[ P_\mathrm{gas} + P_\mathrm{deg} + P_\mathrm{rad} \biggr] . </math>

To derive the expression for <math>p_\mathrm{total}</math> shown in the opening paragraph above, we begin by normalizing each component pressure independently.

Normalized Degenerate Electron Pressure

This normalization is trivial. Given the original expression for the pressure due to a degenerate electron gas (or a zero-temperature Fermi gas),

LSU Key.png

<math>~P_\mathrm{deg} = A_\mathrm{F} F(\chi) </math>

where:  <math>F(\chi) \equiv \chi(2\chi^2 - 3)(\chi^2 + 1)^{1/2} + 3\sinh^{-1}\chi</math>

and:   

<math>\chi \equiv (\rho/B_\mathrm{F})^{1/3}</math>

we see that,

<math> \frac{P_\mathrm{deg}}{A_\mathrm{F}} = F(\chi) . </math>

Normalized Ideal-Gas Pressure

Given the original expression for the pressure of an ideal gas,

LSU Key.png

<math>~P_\mathrm{gas} = \frac{\Re}{\bar{\mu}} \rho T</math>

along with the definitions of the physical constants, <math>~\Re</math>, <math>~A_\mathrm{F}</math>, and <math>~B_\mathrm{F}</math> provided in the accompanying Variables Appendix, we can write,

<math> \frac{P_\mathrm{gas}}{A_\mathrm{F}} = \frac{B_\mathrm{F}}{A_\mathrm{F}} \frac{\Re}{\bar{\mu}} \chi^3 T = \frac{\mu_e}{\bar{\mu}} \biggl[ \chi^3 T \biggr] \frac{8\pi m_p}{3} \biggl( \frac{m_e c}{h} \biggr)^3 \frac{3h^3}{\pi m_e^4 c^5} \biggl(k N_\mathrm{A} \biggr) = \biggl(m_p N_\mathrm{A} \biggr)\frac{\mu_e}{\bar{\mu}} \biggl[8 \chi^3 T \biggr] \frac{k}{ m_e c^2} . </math>

Therefore, letting <math>T_e \equiv m_e c^2/k</math> represent the temperature associated with the rest-mass energy of the electron, the normalized ideal gas pressure is,

<math> \frac{P_\mathrm{gas}}{A_\mathrm{F}} = \biggl(\frac{\mu_e m_p}{\bar{\mu} m_u} \biggr) \biggl[8 \chi^3 \frac{T}{T_e} \biggr] , </math>

where the atomic mass unit, <math>m_u \equiv 1/N_\mathrm{A}</math>.


Whitworth's (1981) Isothermal Free-Energy Surface

© 2014 - 2021 by Joel E. Tohline
|   H_Book Home   |   YouTube   |
Appendices: | Equations | Variables | References | Ramblings | Images | myphys.lsu | ADS |
Recommended citation:   Tohline, Joel E. (2021), The Structure, Stability, & Dynamics of Self-Gravitating Fluids, a (MediaWiki-based) Vistrails.org publication, https://www.vistrails.org/index.php/User:Tohline/citation