Difference between revisions of "User:Tohline/SSC/UniformDensity"
(Working on oscillation modes of uniform-density sphere) |
(Analyze uniform-density sphere) |
||
Line 61: | Line 61: | ||
==Uniform-Density Configuration== | ==Uniform-Density Configuration== | ||
From our derived [http://www.vistrails.org/index.php?title=User:Tohline/SSC/UniformDensity Structure of a uniform-density sphere], in terms of the configuration's radius <math>R</math> and mass <math> | ===Setup=== | ||
From our derived [http://www.vistrails.org/index.php?title=User:Tohline/SSC/UniformDensity Structure of a uniform-density sphere], in terms of the configuration's radius <math>R</math> and mass <math>M</math>, the central pressure and density are, respectively, | |||
<div align="center"> | <div align="center"> | ||
<math>P_c = \frac{3G}{8\pi}\biggl( \frac{M^2}{R^4} \biggr) </math> | <math>P_c = \frac{3G}{8\pi}\biggl( \frac{M^2}{R^4} \biggr) </math> , | ||
</div> | </div> | ||
and | and | ||
<div align="center"> | <div align="center"> | ||
<math>\rho_c = \frac{3M}{4\pi R^3} </math> | <math>\rho_c = \frac{3M}{4\pi R^3} </math> . | ||
</div> | </div> | ||
Hence the characteristic time and acceleration are, respectively, | |||
and | |||
<div align="center"> | <div align="center"> | ||
<math>\frac{ | <math> | ||
\tau_\mathrm{SSC} = \biggl[ \frac{R^2 \rho_c}{P_c} \biggr]^{1/2} = | |||
\biggl[ \frac{2R^3 }{GM} \biggr]^{1/2} = | |||
\biggl[ \frac{3}{2\pi G\rho_c} \biggr]^{1/2}, | |||
</math><br /> | |||
</div> | </div> | ||
and, | |||
<div align="center"> | <div align="center"> | ||
<math> | <math> | ||
g_\mathrm{SSC} = \frac{P_c}{R \rho_c} = \biggl( \frac{GM}{2R^2} \biggr) . | |||
</math><br /> | |||
</div> | </div> | ||
The required functions are, | |||
* <font color="red">Density</font>: | |||
<div align="center"> | <div align="center"> | ||
<math> | <math>\frac{\rho_0(r_0)}{\rho_c} = 1 </math> ; | ||
</div> | </div> | ||
* <font color="red"> | * <font color="red">Pressure</font>: | ||
<div align="center"> | <div align="center"> | ||
<math> | <math>\frac{P_0(r_0)}{P_c} = 1 - \chi_0^2 </math> ; | ||
</div> | </div> | ||
* <font color="red">Gravitational | * <font color="red">Gravitational acceleration</font>: | ||
<div align="center"> | <div align="center"> | ||
<math> | <math> | ||
\frac{g_0(r_0)}{g_\mathrm{SSC}} = 2\chi_0 . | |||
</math><br /> | |||
</div> | </div> | ||
So our desired Eigenvalues and Eigenvectors will be solutions to the following ODE: | |||
: | |||
<div align="center"> | <div align="center"> | ||
<math> | <math> | ||
\frac{1}{(1 - \chi_0^2)} \biggl\{ (1 - \chi_0^2) \frac{d^2x}{d\chi_0^2} + \frac{4}{\chi_0}\biggl[1 - \frac{3}{2}\chi_0^2 \biggr] \frac{dx}{d\chi_0} + \frac{1}{\gamma_\mathrm{g}} \biggl[\tau_\mathrm{SSC}^2 \omega^2 + 2 (4 - 3\gamma_\mathrm{g}) \biggr] x \biggr\} = 0 . | |||
</math><br /> | |||
</div> | </div> | ||
* <font color=" | ===Lowest-order Mode=== | ||
: | * <font color="purple">Mode 0</font>: | ||
: <math>x = \mathrm{constant}</math>, in which case, | |||
<div align="center"> | <div align="center"> | ||
<math>\frac{\rho_c}{\ | <math> | ||
\omega^2 = - 2(4 - 3\gamma_\mathrm{g})\biggl[ \frac{2\pi G\rho_c}{3} \biggr] = 4\pi G \rho_c \biggl[ \gamma_\mathrm{g}- \frac{4}{3} \biggr] | |||
</math> | |||
</div> | </div> | ||
{{LSU_HBook_footer}} | {{LSU_HBook_footer}} |
Revision as of 02:15, 15 February 2010
| Tiled Menu | Tables of Content | Banner Video | Tohline Home Page | |
Spherically Symmetric Configurations (Stability — Part III)
Suppose we now want to study the stability of one of the spherically symmetric, equilibrium structures that have been derived elsewhere. The identified set of simplified, time-dependent governing equations will tell us how the configuration will respond to an applied radial (i.e., spherically symmetric) perturbation that pushes the configuration slightly away from its initial equilibrium state.
The Eigenvalue Problem
As has been derived in an accompanying discussion, the second-order ODE that defines the Eigenvalue problem is,
<math>
\frac{d^2x}{dr_0^2} + \biggl[\frac{4}{r_0} - \biggl(\frac{g_0 \rho_0}{P_0}\biggr) \biggr] \frac{dx}{dr_0} + \biggl(\frac{\rho_0}{\gamma_\mathrm{g} P_0} \biggr)\biggl[\omega^2 + (4 - 3\gamma_\mathrm{g})\frac{g_0}{r_0} \biggr] x = 0 ,
</math>
where, <math>P_0(r_0)</math> and <math>\rho_0(r_0)</math> are the pressure and density distributions in the unperturbed initial equilibrium model and the gravitational acceleration at each radial location in the unperturbed model is,
<math>
g_0(r_0) \equiv \frac{GM_r(r_0)}{r_0^2} = - \frac{1}{\rho_0} \frac{dP_0}{dr_0} .
</math>
Let's write the governing ODE and the key physical variables as dimensionless expressions. First, multiply through by <math>R^2</math> and define the dimensionless radius as,
<math>
\chi_0 \equiv \frac{r_0}{R}
</math>
to obtain,
<math>
\frac{d^2x}{d\chi_0^2} + \biggl[\frac{4}{\chi_0} - \biggl(\frac{R g_0 \rho_0}{P_0}\biggr) \biggr] \frac{dx}{d\chi_0} + \biggl(\frac{R^2 \rho_0}{\gamma_\mathrm{g} P_0} \biggr)\biggl[\omega^2 + (4 - 3\gamma_\mathrm{g})\frac{g_0}{R \chi_0} \biggr] x = 0 .
</math>
Now normalize <math>P_0</math> to <math>P_c</math> and <math>\rho_0</math> to <math>\rho_c</math> to obtain,
<math>
\frac{d^2x}{d\chi_0^2} + \biggl[\frac{4}{\chi_0} - \biggl(\frac{\rho_0}{\rho_c}\biggr) \biggl(\frac{P_c}{P_0}\biggr) \biggl(\frac{R g_0 \rho_c}{P_c}\biggr) \biggr] \frac{dx}{d\chi_0} + \biggl(\frac{\rho_0}{\rho_c}\biggr) \biggl(\frac{P_c}{P_0}\biggr) \biggl(\frac{R^2 \rho_c}{\gamma_\mathrm{g} P_c} \biggr)\biggl[\omega^2 + (4 - 3\gamma_\mathrm{g})\frac{g_0}{R \chi_0} \biggr] x = 0 .
</math>
The characteristic time for dynamical oscillations in spherically symmetric configurations (SSC) appears to be,
<math>
\tau_\mathrm{SSC} \equiv \biggl[ \frac{R^2 \rho_c}{P_c} \biggr]^{1/2} ,
</math>
and the characteristic gravitational acceleration appears to be,
<math>
g_\mathrm{SSC} \equiv \frac{P_c}{R \rho_c} .
</math>
So we can write,
<math>
\frac{d^2x}{d\chi_0^2} + \biggl[\frac{4}{\chi_0} - \biggl(\frac{\rho_0}{\rho_c}\biggr) \biggl(\frac{P_c}{P_0}\biggr) \biggl(\frac{g_0}{g_\mathrm{SSC}}\biggr) \biggr] \frac{dx}{d\chi_0} + \biggl(\frac{\rho_0}{\rho_c}\biggr) \biggl(\frac{P_c}{P_0}\biggr) \biggl(\frac{1}{\gamma_\mathrm{g}} \biggr)\biggl[\tau_\mathrm{SSC}^2 \omega^2 + (4 - 3\gamma_\mathrm{g})\biggl(\frac{g_0}{g_\mathrm{SSC}}\biggr) \frac{1}{\chi_0} \biggr] x = 0 .
</math>
Uniform-Density Configuration
Setup
From our derived Structure of a uniform-density sphere, in terms of the configuration's radius <math>R</math> and mass <math>M</math>, the central pressure and density are, respectively,
<math>P_c = \frac{3G}{8\pi}\biggl( \frac{M^2}{R^4} \biggr) </math> ,
and
<math>\rho_c = \frac{3M}{4\pi R^3} </math> .
Hence the characteristic time and acceleration are, respectively,
<math>
\tau_\mathrm{SSC} = \biggl[ \frac{R^2 \rho_c}{P_c} \biggr]^{1/2} =
\biggl[ \frac{2R^3 }{GM} \biggr]^{1/2} =
\biggl[ \frac{3}{2\pi G\rho_c} \biggr]^{1/2},
</math>
and,
<math>
g_\mathrm{SSC} = \frac{P_c}{R \rho_c} = \biggl( \frac{GM}{2R^2} \biggr) .
</math>
The required functions are,
- Density:
<math>\frac{\rho_0(r_0)}{\rho_c} = 1 </math> ;
- Pressure:
<math>\frac{P_0(r_0)}{P_c} = 1 - \chi_0^2 </math> ;
- Gravitational acceleration:
<math>
\frac{g_0(r_0)}{g_\mathrm{SSC}} = 2\chi_0 .
</math>
So our desired Eigenvalues and Eigenvectors will be solutions to the following ODE:
<math>
\frac{1}{(1 - \chi_0^2)} \biggl\{ (1 - \chi_0^2) \frac{d^2x}{d\chi_0^2} + \frac{4}{\chi_0}\biggl[1 - \frac{3}{2}\chi_0^2 \biggr] \frac{dx}{d\chi_0} + \frac{1}{\gamma_\mathrm{g}} \biggl[\tau_\mathrm{SSC}^2 \omega^2 + 2 (4 - 3\gamma_\mathrm{g}) \biggr] x \biggr\} = 0 .
</math>
Lowest-order Mode
- Mode 0:
- <math>x = \mathrm{constant}</math>, in which case,
<math> \omega^2 = - 2(4 - 3\gamma_\mathrm{g})\biggl[ \frac{2\pi G\rho_c}{3} \biggr] = 4\pi G \rho_c \biggl[ \gamma_\mathrm{g}- \frac{4}{3} \biggr] </math>
© 2014 - 2021 by Joel E. Tohline |