Difference between revisions of "User:Tohline/SSC/UniformDensity"

From VistrailsWiki
Jump to navigation Jump to search
(Working on oscillation modes of uniform-density sphere)
(Analyze uniform-density sphere)
Line 61: Line 61:


==Uniform-Density Configuration==
==Uniform-Density Configuration==
From our derived [http://www.vistrails.org/index.php?title=User:Tohline/SSC/UniformDensity Structure of a uniform-density sphere], in terms of the configuration's radius <math>R</math> and mass <math>R</math>, the central pressure and density are, respectively,
===Setup===
From our derived [http://www.vistrails.org/index.php?title=User:Tohline/SSC/UniformDensity Structure of a uniform-density sphere], in terms of the configuration's radius <math>R</math> and mass <math>M</math>, the central pressure and density are, respectively,
<div align="center">
<div align="center">
<math>P_c = \frac{3G}{8\pi}\biggl( \frac{M^2}{R^4} \biggr) </math> ;
<math>P_c = \frac{3G}{8\pi}\biggl( \frac{M^2}{R^4} \biggr) </math> ,
</div>
</div>
and
and
<div align="center">
<div align="center">
<math>\rho_c = \frac{3M}{4\pi R^3} </math> ;
<math>\rho_c = \frac{3M}{4\pi R^3} </math> .
</div>
</div>
 
Hence the characteristic time and acceleration are, respectively,
 
 
 
and the required functions are,
* <font color="red">Mass</font>: 
: Given the density, <math>\rho_c</math>, and the radius, <math>R</math>, of the configuration, the total mass is,
<div align="center">
<math>M = \frac{4\pi}{3} \rho_c R^3 </math> ;
</div>
 
: and, expressed as a function of <math>M</math>, the mass that lies interior to radius <math>r</math> is,
<div align="center">
<div align="center">
<math>\frac{M_r}{M} = \biggl(\frac{r}{R} \biggr)^3</math> .
<math>  
\tau_\mathrm{SSC} = \biggl[ \frac{R^2 \rho_c}{P_c} \biggr]^{1/2} =  
\biggl[ \frac{2R^3 }{GM} \biggr]^{1/2} =
\biggl[ \frac{3}{2\pi G\rho_c} \biggr]^{1/2},
</math><br />
</div>
</div>
* <font color="red">Pressure</font>:
and,
: Given values for the pair of model parameters <math>( \rho_c , R )</math>, or <math>( M , R )</math>, or <math>( \rho_c , M )</math>, the central pressure of the configuration is,
<div align="center">
<div align="center">
<math>P_c = \frac{2\pi G}{3} \rho_c^2 R^2 = \frac{3G}{8\pi}\biggl( \frac{M^2}{R^4} \biggr) = \biggl[ \frac{\pi}{6} G^3 \rho_c^4 M^2 \biggr]^{1/3}</math> ;
<math>  
g_\mathrm{SSC} = \frac{P_c}{R \rho_c} = \biggl( \frac{GM}{2R^2} \biggr) .
</math><br />
</div>
</div>


: and, expressed in terms of the central pressure <math>P_c</math>, the variation with radius of the pressure is,
The required functions are,
* <font color="red">Density</font>:
<div align="center">
<div align="center">
<math>P(r) = P_c \biggl[ 1 -\biggl(\frac{r}{R} \biggr)^2 \biggr]</math> .
<math>\frac{\rho_0(r_0)}{\rho_c} = 1 </math> ;
</div>
</div>


* <font color="red">Enthalpy</font>:  
* <font color="red">Pressure</font>:  
: Throughout the configuration, the enthalpy is given by the relation,
<div align="center">
<div align="center">
<math>H(r) = \frac{P(r)}{ \rho_c} = \frac{GM}{2R} \biggl[ 1 -\biggl(\frac{r}{R} \biggr)^2 \biggr]</math> .
<math>\frac{P_0(r_0)}{P_c} = 1 - \chi_0^2 </math> ;
</div>
</div>


* <font color="red">Gravitational potential</font>:  
* <font color="red">Gravitational acceleration</font>:  
: Throughout the configuration &#8212; that is, for all <math>r \leq R</math> &#8212; the gravitational potential is given by the relation,
<div align="center">
<math>\Phi_\mathrm{surf} - \Phi(r) = H(r) = \frac{G M}{2R} \biggl[ 1- \biggl(\frac{r}{R} \biggr)^2 \biggr] </math> .
</div>
: Outside of this spherical configuration&#8212; that is, for all <math>r \geq R</math> &#8212;  the potential should behave like a point mass potential, that is,
<div align="center">
<div align="center">
<math>\Phi(r) = - \frac{GM}{r} </math> .
<math>  
</div>
\frac{g_0(r_0)}{g_\mathrm{SSC}} = 2\chi_0  .
: Matching these two expressions at the surface of the configuration, that is, setting <math>\Phi_\mathrm{surf} = - GM/R</math>, we have what is generally considered the properly normalized prescription for the gravitational potential inside a uniform-density, spherically symmetric configuration:
</math><br />
<div align="center">
<math>\Phi(r) = - \frac{G M}{R} \biggl\{ 1 + \frac{1}{2}\biggl[ 1- \biggl(\frac{r}{R} \biggr)^2 \biggr] \biggr\} = - \frac{3G M}{2R} \biggl[ 1 - \frac{1}{3} \biggl(\frac{r}{R} \biggr)^2 \biggr] </math> .
</div>
</div>


* <font color="red">Mass-Radius relationship</font>:
So our desired Eigenvalues and Eigenvectors will be solutions to the following ODE:
: We see that, for a given value of <math>\rho_c</math>, the relationship between the configuration's total mass and radius is,
<div align="center">
<div align="center">
<math>M \propto R^3  ~~~~~\mathrm{or}~~~~~R \propto M^{1/3} </math> .
<math>
\frac{1}{(1 - \chi_0^2)}  \biggl\{ (1 - \chi_0^2) \frac{d^2x}{d\chi_0^2} + \frac{4}{\chi_0}\biggl[1 -  \frac{3}{2}\chi_0^2 \biggr] \frac{dx}{d\chi_0} + \frac{1}{\gamma_\mathrm{g}} \biggl[\tau_\mathrm{SSC}^2 \omega^2 + 2 (4 - 3\gamma_\mathrm{g}) \biggr]  x \biggr\} = 0 .
</math><br />
</div>
</div>


* <font color="red">Central- to Mean-Density Ratio</font>:
===Lowest-order Mode===
: Because this is a uniform-density structure, the ratio of its central density to its mean density is unity, that is,
* <font color="purple">Mode 0</font>:
: <math>x = \mathrm{constant}</math>, in which case,
<div align="center">
<div align="center">
<math>\frac{\rho_c}{\bar{\rho}} = 1 </math> .
<math>
\omega^2 = - 2(4 - 3\gamma_\mathrm{g})\biggl[ \frac{2\pi G\rho_c}{3} \biggr] = 4\pi G \rho_c \biggl[ \gamma_\mathrm{g}- \frac{4}{3} \biggr]
</math>
</div>
</div>
{{LSU_HBook_footer}}
{{LSU_HBook_footer}}

Revision as of 02:15, 15 February 2010

Whitworth's (1981) Isothermal Free-Energy Surface
|   Tiled Menu   |   Tables of Content   |  Banner Video   |  Tohline Home Page   |

Spherically Symmetric Configurations (Stability — Part III)

LSU Stable.animated.gif

Suppose we now want to study the stability of one of the spherically symmetric, equilibrium structures that have been derived elsewhere. The identified set of simplified, time-dependent governing equations will tell us how the configuration will respond to an applied radial (i.e., spherically symmetric) perturbation that pushes the configuration slightly away from its initial equilibrium state.

The Eigenvalue Problem

As has been derived in an accompanying discussion, the second-order ODE that defines the Eigenvalue problem is,

<math> \frac{d^2x}{dr_0^2} + \biggl[\frac{4}{r_0} - \biggl(\frac{g_0 \rho_0}{P_0}\biggr) \biggr] \frac{dx}{dr_0} + \biggl(\frac{\rho_0}{\gamma_\mathrm{g} P_0} \biggr)\biggl[\omega^2 + (4 - 3\gamma_\mathrm{g})\frac{g_0}{r_0} \biggr] x = 0 , </math>

where, <math>P_0(r_0)</math> and <math>\rho_0(r_0)</math> are the pressure and density distributions in the unperturbed initial equilibrium model and the gravitational acceleration at each radial location in the unperturbed model is,

<math> g_0(r_0) \equiv \frac{GM_r(r_0)}{r_0^2} = - \frac{1}{\rho_0} \frac{dP_0}{dr_0} . </math>

Let's write the governing ODE and the key physical variables as dimensionless expressions. First, multiply through by <math>R^2</math> and define the dimensionless radius as,

<math> \chi_0 \equiv \frac{r_0}{R} </math>

to obtain,

<math> \frac{d^2x}{d\chi_0^2} + \biggl[\frac{4}{\chi_0} - \biggl(\frac{R g_0 \rho_0}{P_0}\biggr) \biggr] \frac{dx}{d\chi_0} + \biggl(\frac{R^2 \rho_0}{\gamma_\mathrm{g} P_0} \biggr)\biggl[\omega^2 + (4 - 3\gamma_\mathrm{g})\frac{g_0}{R \chi_0} \biggr] x = 0 . </math>

Now normalize <math>P_0</math> to <math>P_c</math> and <math>\rho_0</math> to <math>\rho_c</math> to obtain,

<math> \frac{d^2x}{d\chi_0^2} + \biggl[\frac{4}{\chi_0} - \biggl(\frac{\rho_0}{\rho_c}\biggr) \biggl(\frac{P_c}{P_0}\biggr) \biggl(\frac{R g_0 \rho_c}{P_c}\biggr) \biggr] \frac{dx}{d\chi_0} + \biggl(\frac{\rho_0}{\rho_c}\biggr) \biggl(\frac{P_c}{P_0}\biggr) \biggl(\frac{R^2 \rho_c}{\gamma_\mathrm{g} P_c} \biggr)\biggl[\omega^2 + (4 - 3\gamma_\mathrm{g})\frac{g_0}{R \chi_0} \biggr] x = 0 . </math>

The characteristic time for dynamical oscillations in spherically symmetric configurations (SSC) appears to be,

<math> \tau_\mathrm{SSC} \equiv \biggl[ \frac{R^2 \rho_c}{P_c} \biggr]^{1/2} , </math>

and the characteristic gravitational acceleration appears to be,

<math> g_\mathrm{SSC} \equiv \frac{P_c}{R \rho_c} . </math>

So we can write,

<math> \frac{d^2x}{d\chi_0^2} + \biggl[\frac{4}{\chi_0} - \biggl(\frac{\rho_0}{\rho_c}\biggr) \biggl(\frac{P_c}{P_0}\biggr) \biggl(\frac{g_0}{g_\mathrm{SSC}}\biggr) \biggr] \frac{dx}{d\chi_0} + \biggl(\frac{\rho_0}{\rho_c}\biggr) \biggl(\frac{P_c}{P_0}\biggr) \biggl(\frac{1}{\gamma_\mathrm{g}} \biggr)\biggl[\tau_\mathrm{SSC}^2 \omega^2 + (4 - 3\gamma_\mathrm{g})\biggl(\frac{g_0}{g_\mathrm{SSC}}\biggr) \frac{1}{\chi_0} \biggr] x = 0 . </math>


Uniform-Density Configuration

Setup

From our derived Structure of a uniform-density sphere, in terms of the configuration's radius <math>R</math> and mass <math>M</math>, the central pressure and density are, respectively,

<math>P_c = \frac{3G}{8\pi}\biggl( \frac{M^2}{R^4} \biggr) </math> ,

and

<math>\rho_c = \frac{3M}{4\pi R^3} </math> .

Hence the characteristic time and acceleration are, respectively,

<math> \tau_\mathrm{SSC} = \biggl[ \frac{R^2 \rho_c}{P_c} \biggr]^{1/2} = \biggl[ \frac{2R^3 }{GM} \biggr]^{1/2} = \biggl[ \frac{3}{2\pi G\rho_c} \biggr]^{1/2}, </math>

and,

<math> g_\mathrm{SSC} = \frac{P_c}{R \rho_c} = \biggl( \frac{GM}{2R^2} \biggr) . </math>

The required functions are,

  • Density:

<math>\frac{\rho_0(r_0)}{\rho_c} = 1 </math> ;

  • Pressure:

<math>\frac{P_0(r_0)}{P_c} = 1 - \chi_0^2 </math> ;

  • Gravitational acceleration:

<math> \frac{g_0(r_0)}{g_\mathrm{SSC}} = 2\chi_0 . </math>

So our desired Eigenvalues and Eigenvectors will be solutions to the following ODE:

<math> \frac{1}{(1 - \chi_0^2)} \biggl\{ (1 - \chi_0^2) \frac{d^2x}{d\chi_0^2} + \frac{4}{\chi_0}\biggl[1 - \frac{3}{2}\chi_0^2 \biggr] \frac{dx}{d\chi_0} + \frac{1}{\gamma_\mathrm{g}} \biggl[\tau_\mathrm{SSC}^2 \omega^2 + 2 (4 - 3\gamma_\mathrm{g}) \biggr] x \biggr\} = 0 . </math>

Lowest-order Mode

  • Mode 0:
<math>x = \mathrm{constant}</math>, in which case,

<math> \omega^2 = - 2(4 - 3\gamma_\mathrm{g})\biggl[ \frac{2\pi G\rho_c}{3} \biggr] = 4\pi G \rho_c \biggl[ \gamma_\mathrm{g}- \frac{4}{3} \biggr] </math>

Whitworth's (1981) Isothermal Free-Energy Surface

© 2014 - 2021 by Joel E. Tohline
|   H_Book Home   |   YouTube   |
Appendices: | Equations | Variables | References | Ramblings | Images | myphys.lsu | ADS |
Recommended citation:   Tohline, Joel E. (2021), The Structure, Stability, & Dynamics of Self-Gravitating Fluids, a (MediaWiki-based) Vistrails.org publication, https://www.vistrails.org/index.php/User:Tohline/citation