Difference between revisions of "User:Tohline/Appendix/Ramblings/ConcentricEllipsodalDaringAttack"
Line 593: | Line 593: | ||
-1 | -1 | ||
\biggr\} \, . | \biggr\} \, . | ||
</math> | |||
</td> | |||
</tr> | |||
</table> | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~\frac{\partial x}{\partial \lambda_1}</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
\frac{1}{4\lambda_3^{3/ 2}} \biggl\{ | |||
\biggl[ 1 + 8 \lambda_1^2 \lambda_2^2 \lambda_3^4\biggr]^{1 / 2} - 1 | |||
\biggr\}^{-1 / 2} | |||
\frac{\partial}{\partial \lambda_1}\biggl[ 1 + 8 \lambda_1^2 \lambda_2^2 \lambda_3^4\biggr]^{1 / 2} | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
\frac{1}{8\lambda_3^{3/ 2}} \biggl\{ | |||
\biggl[ 1 + 8 \lambda_1^2 \lambda_2^2 \lambda_3^4\biggr]^{1 / 2} - 1 | |||
\biggr\}^{-1 / 2} | |||
\biggl[ 1 + 8 \lambda_1^2 \lambda_2^2 \lambda_3^4\biggr]^{-1 / 2} (16\lambda_1 \lambda_2^2 \lambda_3^4) \, , | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
<math>~\frac{\partial x}{\partial \lambda_2}</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
\frac{1}{4\lambda_3^{3/ 2}} \biggl\{ | |||
\biggl[ 1 + 8 \lambda_1^2 \lambda_2^2 \lambda_3^4\biggr]^{1 / 2} - 1 | |||
\biggr\}^{-1 / 2} | |||
\frac{\partial}{\partial \lambda_2}\biggl[ 1 + 8 \lambda_1^2 \lambda_2^2 \lambda_3^4\biggr]^{1 / 2} | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
\frac{1}{8\lambda_3^{3/ 2}} \biggl\{ | |||
\biggl[ 1 + 8 \lambda_1^2 \lambda_2^2 \lambda_3^4\biggr]^{1 / 2} - 1 | |||
\biggr\}^{-1 / 2} | |||
\biggl[ 1 + 8 \lambda_1^2 \lambda_2^2 \lambda_3^4\biggr]^{-1 / 2} | |||
(16\lambda_1^2 \lambda_2 \lambda_3^4) \, , | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
<math>~\frac{\partial x}{\partial \lambda_3}</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
-\frac{3}{4\lambda_3^{5/ 2}} \biggl\{ | |||
\biggl[ 1 + 8 \lambda_1^2 \lambda_2^2 \lambda_3^4\biggr]^{1 / 2} - 1 | |||
\biggr\}^{1 / 2} | |||
+ | |||
\frac{1}{4\lambda_3^{3/ 2}} \biggl\{ | |||
\biggl[ 1 + 8 \lambda_1^2 \lambda_2^2 \lambda_3^4\biggr]^{1 / 2} - 1 | |||
\biggr\}^{- 1 / 2} | |||
\frac{\partial}{\partial \lambda_3}\biggl[ 1 + 8 \lambda_1^2 \lambda_2^2 \lambda_3^4\biggr]^{1 / 2} | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
-\frac{3}{4\lambda_3^{5/ 2}} \biggl\{ | |||
\biggl[ 1 + 8 \lambda_1^2 \lambda_2^2 \lambda_3^4\biggr]^{1 / 2} - 1 | |||
\biggr\}^{1 / 2} | |||
+ | |||
\frac{1}{8\lambda_3^{3/ 2}} \biggl\{ | |||
\biggl[ 1 + 8 \lambda_1^2 \lambda_2^2 \lambda_3^4\biggr]^{1 / 2} - 1 | |||
\biggr\}^{- 1 / 2} | |||
\biggl[ 1 + 8 \lambda_1^2 \lambda_2^2 \lambda_3^4\biggr]^{-1 / 2} (32 \lambda_1^2 \lambda_2^2 \lambda_3^3) \, . | |||
</math> | |||
</td> | |||
</tr> | |||
</table> | |||
For convenience, let's define, | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~\Lambda^2</math> | |||
</td> | |||
<td align="center"> | |||
<math>~\equiv</math> | |||
</td> | |||
<td align="left"> | |||
<math>~1 + 8\lambda_1^2 \lambda_2^2 \lambda_3^4 </math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
<math>~\Rightarrow ~~~ \lambda_1^2 \lambda_2^2 \lambda_3^4 </math> | |||
</td> | |||
<td align="center"> | |||
<math>~\equiv</math> | |||
</td> | |||
<td align="left"> | |||
<math>~\frac{1}{8}\biggl( \Lambda^2 - 1\biggr) \, .</math> | |||
</td> | |||
</tr> | |||
</table> | |||
Then these partial derivatives may be rewritten as, | |||
<!-- Reduced Forms --> | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~\frac{\partial z}{\partial \lambda_1}</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
\frac{(1-\lambda_2^2)^{1 / 2}}{p} \, , | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
<math>~\frac{\partial z}{\partial \lambda_2}</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
-\frac{\lambda_1 \lambda_2}{p(1 - \lambda_2^2)^{1 / 2}} \, , | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
<math>~\frac{\partial z}{\partial \lambda_3}</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
0 \, , | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
<math>~\frac{\partial y}{\partial \lambda_1}</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
\frac{2\lambda_1 \lambda_2^2 \lambda_3^2}{\Lambda} \, , | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
<math>~\frac{\partial y}{\partial \lambda_2}</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
\frac{2\lambda_1^2 \lambda_2 \lambda_3^2}{\Lambda} \, , | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
<math>~\frac{\partial y}{\partial \lambda_3}</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~\frac{(\Lambda - 1)}{2\lambda_3^3 \Lambda} | |||
\, . | |||
</math> | |||
</td> | |||
</tr> | |||
</table> | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~\frac{\partial x}{\partial \lambda_1}</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
\frac{1}{4\lambda_3^{3/ 2}} \biggl\{ | |||
\biggl[ 1 + 8 \lambda_1^2 \lambda_2^2 \lambda_3^4\biggr]^{1 / 2} - 1 | |||
\biggr\}^{-1 / 2} | |||
\frac{\partial}{\partial \lambda_1}\biggl[ 1 + 8 \lambda_1^2 \lambda_2^2 \lambda_3^4\biggr]^{1 / 2} | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
\frac{1}{8\lambda_3^{3/ 2}} \biggl\{ | |||
\biggl[ 1 + 8 \lambda_1^2 \lambda_2^2 \lambda_3^4\biggr]^{1 / 2} - 1 | |||
\biggr\}^{-1 / 2} | |||
\biggl[ 1 + 8 \lambda_1^2 \lambda_2^2 \lambda_3^4\biggr]^{-1 / 2} (16\lambda_1 \lambda_2^2 \lambda_3^4) \, , | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
<math>~\frac{\partial x}{\partial \lambda_2}</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
\frac{1}{4\lambda_3^{3/ 2}} \biggl\{ | |||
\biggl[ 1 + 8 \lambda_1^2 \lambda_2^2 \lambda_3^4\biggr]^{1 / 2} - 1 | |||
\biggr\}^{-1 / 2} | |||
\frac{\partial}{\partial \lambda_2}\biggl[ 1 + 8 \lambda_1^2 \lambda_2^2 \lambda_3^4\biggr]^{1 / 2} | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
\frac{1}{8\lambda_3^{3/ 2}} \biggl\{ | |||
\biggl[ 1 + 8 \lambda_1^2 \lambda_2^2 \lambda_3^4\biggr]^{1 / 2} - 1 | |||
\biggr\}^{-1 / 2} | |||
\biggl[ 1 + 8 \lambda_1^2 \lambda_2^2 \lambda_3^4\biggr]^{-1 / 2} | |||
(16\lambda_1^2 \lambda_2 \lambda_3^4) \, , | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
<math>~\frac{\partial x}{\partial \lambda_3}</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
-\frac{3}{4\lambda_3^{5/ 2}} \biggl\{ | |||
\biggl[ 1 + 8 \lambda_1^2 \lambda_2^2 \lambda_3^4\biggr]^{1 / 2} - 1 | |||
\biggr\}^{1 / 2} | |||
+ | |||
\frac{1}{4\lambda_3^{3/ 2}} \biggl\{ | |||
\biggl[ 1 + 8 \lambda_1^2 \lambda_2^2 \lambda_3^4\biggr]^{1 / 2} - 1 | |||
\biggr\}^{- 1 / 2} | |||
\frac{\partial}{\partial \lambda_3}\biggl[ 1 + 8 \lambda_1^2 \lambda_2^2 \lambda_3^4\biggr]^{1 / 2} | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
-\frac{3}{4\lambda_3^{5/ 2}} \biggl\{ | |||
\biggl[ 1 + 8 \lambda_1^2 \lambda_2^2 \lambda_3^4\biggr]^{1 / 2} - 1 | |||
\biggr\}^{1 / 2} | |||
+ | |||
\frac{1}{8\lambda_3^{3/ 2}} \biggl\{ | |||
\biggl[ 1 + 8 \lambda_1^2 \lambda_2^2 \lambda_3^4\biggr]^{1 / 2} - 1 | |||
\biggr\}^{- 1 / 2} | |||
\biggl[ 1 + 8 \lambda_1^2 \lambda_2^2 \lambda_3^4\biggr]^{-1 / 2} (32 \lambda_1^2 \lambda_2^2 \lambda_3^3) \, . | |||
</math> | </math> | ||
</td> | </td> |
Revision as of 02:06, 18 March 2021
Daring Attack
| Tiled Menu | Tables of Content | Banner Video | Tohline Home Page | |
Background
Building on our general introduction to Direction Cosines in the context of orthogonal curvilinear coordinate systems, and on our previous development of the so-called T6 (concentric elliptic) coordinate system, here we take a somewhat daring attack on this problem, mixing our approach to identifying the expression for the third curvilinear coordinate. Broadly speaking, this entire study is motivated by our desire to construct a fully analytically prescribable model of a nonuniform-density ellipsoidal configuration that is an analog to Riemann S-Type ellipsoids.
Direction Cosine Components for T6 Coordinates | ||||||||||||||
<math>~n</math> | <math>~\lambda_n</math> | <math>~h_n</math> | <math>~\frac{\partial \lambda_n}{\partial x}</math> | <math>~\frac{\partial \lambda_n}{\partial y}</math> | <math>~\frac{\partial \lambda_n}{\partial z}</math> | <math>~\gamma_{n1}</math> | <math>~\gamma_{n2}</math> | <math>~\gamma_{n3}</math> | ||||||
<math>~1</math> | <math>~(x^2 + q^2 y^2 + p^2 z^2)^{1 / 2} </math> | <math>~\lambda_1 \ell_{3D}</math> | <math>~\frac{x}{\lambda_1}</math> | <math>~\frac{q^2 y}{\lambda_1}</math> | <math>~\frac{p^2 z}{\lambda_1}</math> | <math>~(x) \ell_{3D}</math> | <math>~(q^2 y)\ell_{3D}</math> | <math>~(p^2z) \ell_{3D}</math> | ||||||
<math>~2</math> | --- | --- | --- | --- | --- | <math>~\ell_q \ell_{3D} (xp^2z)</math> | <math>~\ell_q \ell_{3D} (q^2 y p^2z) </math> | <math>~- (x^2 + q^4y^2)\ell_q \ell_{3D}</math> | ||||||
<math>~3</math> | <math>~\tan^{-1}\biggl( \frac{y^{1/q^2}}{x} \biggr)</math> | <math>~\frac{xq^2 y \ell_q}{\sin\lambda_3 \cos\lambda_3}</math> | <math>~-\frac{\sin\lambda_3 \cos\lambda_3}{x}</math> | <math>~+\frac{\sin\lambda_3 \cos\lambda_3}{q^2y}</math> | <math>~0</math> | <math>~-q^2 y \ell_q</math> | <math>~x\ell_q</math> | <math>~0</math> | ||||||
|
As before, let's adopt the first-coordinate expression,
<math>~\lambda_1</math> |
<math>~\equiv</math> |
<math>~(x^2 + q^2 y^2 + p^2 z^2)^{1 / 2} \, ,</math> |
but for the third-coordinate expression we will abandon the trigonometric expression and instead simply use,
<math>~\lambda_3</math> |
<math>~\equiv</math> |
<math>~\frac{y^{1/q^2}}{x} \, .</math> |
This modified third-coordinate expression means that the last row of the above table changes, as follows.
Daring Attack | ||||||||
<math>~n</math> | <math>~\lambda_n</math> | <math>~h_n</math> | <math>~\frac{\partial \lambda_n}{\partial x}</math> | <math>~\frac{\partial \lambda_n}{\partial y}</math> | <math>~\frac{\partial \lambda_n}{\partial z}</math> | <math>~\gamma_{n1}</math> | <math>~\gamma_{n2}</math> | <math>~\gamma_{n3}</math> |
<math>~1</math> | <math>~(x^2 + q^2 y^2 + p^2 z^2)^{1 / 2} </math> | <math>~\lambda_1 \ell_{3D}</math> | <math>~\frac{x}{\lambda_1}</math> | <math>~\frac{q^2 y}{\lambda_1}</math> | <math>~\frac{p^2 z}{\lambda_1}</math> | <math>~(x) \ell_{3D}</math> | <math>~(q^2 y)\ell_{3D}</math> | <math>~(p^2z) \ell_{3D}</math> |
<math>~2</math> | --- | --- | --- | --- | --- | <math>~\ell_q \ell_{3D} (xp^2z)</math> | <math>~\ell_q \ell_{3D} (q^2 y p^2z) </math> | <math>~- (x^2 + q^4y^2)\ell_q \ell_{3D}</math> |
<math>~3</math> | <math>~\frac{y^{1/q^2}}{x} </math> | <math>~\frac{xq^2 y \ell_q}{\lambda_3}</math> | <math>~-\frac{\lambda_3}{x}</math> | <math>~+\frac{\lambda_3}{q^2y}</math> | <math>~0</math> | <math>~-q^2 y \ell_q</math> | <math>~x\ell_q</math> | <math>~0</math> |
Notice that the direction cosine functions for the (as yet, unknown) second-coordinate function remain the same. This is because the direction-cosine functions associated with both <math>~\lambda_1</math> and <math>~\lambda_3</math> remain unchanged, so it must be true that the cross product of the first and third unit vectors leads to the same components for the second unit vector.
New Approach
Setup
The surface of an ellipsoid with semi-major axes (a, b, c) is defined by the expression,
<math>~1</math> |
<math>~=</math> |
<math>~\biggl( \frac{x}{a}\biggr)^2 + \biggl( \frac{y}{b}\biggr)^2 + \biggl( \frac{z}{c}\biggr)^2 \, .</math> |
This is identical to our expression for <math>~\lambda_1</math> if we make the associations,
<math>~a = \lambda_1 \, ,</math> |
<math>~b = \frac{\lambda_1}{q} \ ,</math> |
<math>~c = \frac{\lambda_1}{p} \, .</math> |
Now, given that <math>~\lambda_3</math> does not functionally depend on <math>~z</math>, let's consider that the choice of <math>~z</math> is tightly associated with the specification of the second coordinate, <math>~\lambda_2</math>. Specifically, let's adopt the definition,
<math>~\lambda_2^2</math> |
<math>~\equiv</math> |
<math>~1 - \biggl( \frac{z}{c}\biggr)^2 \, ,</math> |
in which case, we see that,
<math>~\biggl( \frac{x}{a}\biggr)^2 + \biggl( \frac{y}{b}\biggr)^2 = \lambda_2^2 \, ,</math> |
and, |
<math>~z^2 = c^2 (1 - \lambda_2^2) = \frac{\lambda_1^2 (1 - \lambda_2^2)}{p^2} \, .</math> |
<math>~z^2</math> |
<math>~=</math> |
<math>~c^2(1-\lambda_2^2) = \frac{\lambda_1^2(1-\lambda_2^2)}{p^2} \, ,</math> |
and,
<math>~\biggl( \frac{x}{a}\biggr)^2 + \biggl( \frac{y}{b}\biggr)^2 </math> |
<math>~=</math> |
<math>~ \lambda_2^2 </math> |
<math>~\Rightarrow ~~~ x^2 + q^2 y^2 </math> |
<math>~=</math> |
<math>~ \lambda_1^2 \lambda_2^2 \, .</math> |
Combining this last expression with the <math>~x - y</math> relationship that is provided by the definition of <math>~\lambda_3</math>, gives,
<math>~\lambda_1^2 \lambda_2^2</math> |
<math>~=</math> |
<math>~\frac{y^{2/q^2}}{\lambda_3^2} + q^2y^2 \, .</math> |
In general, this does not give us an analytical expression for <math>~y(\lambda_1, \lambda_2, \lambda_3)</math>. But a solution is obtainable for selected values of <math>~q^2 > 1</math>.
Examine the Case: q2 = 2
If we set <math>~q^2 = 2</math>, then this last combined expression becomes a quadratic equation for <math>~y</math>. Specifically, we find,
<math>~ 0</math> |
<math>~=</math> |
<math>~ 2y^2 + \frac{y}{\lambda_3^2} - \lambda_1^2 \lambda_2^2 </math> |
<math>~ \Rightarrow~~~ y</math> |
<math>~=</math> |
<math>~ \frac{1}{4} \biggl\{ -\frac{1}{\lambda_3^2} \pm \biggl[ \frac{1}{\lambda_3^4} + 8 \lambda_1^2 \lambda_2^2 \biggr]^{1 / 2} \biggr\} </math> |
|
<math>~=</math> |
<math>~ \frac{1}{4\lambda_3^2} \biggl\{ \biggl[ 1 + 8 \lambda_1^2 \lambda_2^2 \lambda_3^4\biggr]^{1 / 2} - 1 \biggr\} \, . </math> |
(Note that, for reasons of simplicity for the time being, in this last expression we have retained only the "positive" solution.) Again, calling upon the <math>~x - y</math> relationship that is provided through the definition of <math>~\lambda_3</math>, we find (when q2 = 2),
<math>~x^2</math> |
<math>~=</math> |
<math>~\frac{y}{\lambda_3}</math> |
|
<math>~=</math> |
<math>~ \frac{1}{4\lambda_3^3} \biggl\{ \biggl[ 1 + 8 \lambda_1^2 \lambda_2^2 \lambda_3^4\biggr]^{1 / 2} - 1 \biggr\} </math> |
<math>~\Rightarrow ~~~ x</math> |
<math>~=</math> |
<math>~\pm \frac{1}{2\lambda_3^{3/ 2}} \biggl\{ \biggl[ 1 + 8 \lambda_1^2 \lambda_2^2 \lambda_3^4\biggr]^{1 / 2} - 1 \biggr\}^{1 / 2} \, . </math> |
Summary (q2 = 2)
|
Let's examine all nine partial derivatives.
<math>~\frac{\partial z}{\partial \lambda_1}</math> |
<math>~=</math> |
<math>~ \frac{(1-\lambda_2^2)^{1 / 2}}{p} \, , </math> |
<math>~\frac{\partial z}{\partial \lambda_2}</math> |
<math>~=</math> |
<math>~ -\frac{\lambda_1 \lambda_2}{p(1 - \lambda_2^2)^{1 / 2}} \, , </math> |
<math>~\frac{\partial z}{\partial \lambda_3}</math> |
<math>~=</math> |
<math>~ 0 \, . </math> |
<math>~\frac{\partial y}{\partial \lambda_1}</math> |
<math>~=</math> |
<math>~ \frac{1}{4\lambda_3^2} \cdot \frac{\partial}{\partial \lambda_1} \biggl[ 1 + 8 \lambda_1^2 \lambda_2^2 \lambda_3^4\biggr]^{1 / 2} = \frac{1}{8\lambda_3^2} \biggl[ 1 + 8 \lambda_1^2 \lambda_2^2 \lambda_3^4\biggr]^{-1 / 2} 16\lambda_1 \lambda_2^2 \lambda_3^4 = 2\lambda_1 \lambda_2^2 \lambda_3^2\biggl[ 1 + 8 \lambda_1^2 \lambda_2^2 \lambda_3^4\biggr]^{-1 / 2} \, , </math> |
<math>~\frac{\partial y}{\partial \lambda_2}</math> |
<math>~=</math> |
<math>~ \frac{1}{4\lambda_3^2} \cdot \frac{\partial}{\partial \lambda_2} \biggl[ 1 + 8 \lambda_1^2 \lambda_2^2 \lambda_3^4\biggr]^{1 / 2} = \frac{1}{8\lambda_3^2} \biggl[ 1 + 8 \lambda_1^2 \lambda_2^2 \lambda_3^4\biggr]^{-1 / 2} 16\lambda_1^2 \lambda_2 \lambda_3^4 = 2\lambda_1^2 \lambda_2 \lambda_3^2\biggl[ 1 + 8 \lambda_1^2 \lambda_2^2 \lambda_3^4\biggr]^{-1 / 2} \, , </math> |
<math>~\frac{\partial y}{\partial \lambda_3}</math> |
<math>~=</math> |
<math>~ - \frac{1}{2\lambda_3^3} \biggl\{ \biggl[ 1 + 8 \lambda_1^2 \lambda_2^2 \lambda_3^4\biggr]^{1 / 2} - 1 \biggr\} + \frac{1}{4\lambda_3^2} \frac{\partial}{\partial \lambda_3} \biggl[ 1 + 8 \lambda_1^2 \lambda_2^2 \lambda_3^4\biggr]^{1 / 2} </math> |
|
<math>~=</math> |
<math>~ - \frac{1}{2\lambda_3^3} \biggl[ \biggl( 1 + 8 \lambda_1^2 \lambda_2^2 \lambda_3^4\biggr)^{1 / 2} - 1 \biggr] + \frac{1}{8\lambda_3^2} \biggl( 1 + 8 \lambda_1^2 \lambda_2^2 \lambda_3^4\biggr)^{-1 / 2} 32\lambda_1^2 \lambda_2^2 \lambda_3^3 </math> |
|
<math>~=</math> |
<math>~\frac{1}{2\lambda_3^3}\biggl( 1 + 8 \lambda_1^2 \lambda_2^2 \lambda_3^4\biggr)^{-1 / 2} \biggl\{ \biggl( 1 + 8 \lambda_1^2 \lambda_2^2 \lambda_3^4\biggr)^{1 / 2} -1 \biggr\} \, . </math> |
<math>~\frac{\partial x}{\partial \lambda_1}</math> |
<math>~=</math> |
<math>~ \frac{1}{4\lambda_3^{3/ 2}} \biggl\{ \biggl[ 1 + 8 \lambda_1^2 \lambda_2^2 \lambda_3^4\biggr]^{1 / 2} - 1 \biggr\}^{-1 / 2} \frac{\partial}{\partial \lambda_1}\biggl[ 1 + 8 \lambda_1^2 \lambda_2^2 \lambda_3^4\biggr]^{1 / 2} </math> |
|
<math>~=</math> |
<math>~ \frac{1}{8\lambda_3^{3/ 2}} \biggl\{ \biggl[ 1 + 8 \lambda_1^2 \lambda_2^2 \lambda_3^4\biggr]^{1 / 2} - 1 \biggr\}^{-1 / 2} \biggl[ 1 + 8 \lambda_1^2 \lambda_2^2 \lambda_3^4\biggr]^{-1 / 2} (16\lambda_1 \lambda_2^2 \lambda_3^4) \, , </math> |
<math>~\frac{\partial x}{\partial \lambda_2}</math> |
<math>~=</math> |
<math>~ \frac{1}{4\lambda_3^{3/ 2}} \biggl\{ \biggl[ 1 + 8 \lambda_1^2 \lambda_2^2 \lambda_3^4\biggr]^{1 / 2} - 1 \biggr\}^{-1 / 2} \frac{\partial}{\partial \lambda_2}\biggl[ 1 + 8 \lambda_1^2 \lambda_2^2 \lambda_3^4\biggr]^{1 / 2} </math> |
|
<math>~=</math> |
<math>~ \frac{1}{8\lambda_3^{3/ 2}} \biggl\{ \biggl[ 1 + 8 \lambda_1^2 \lambda_2^2 \lambda_3^4\biggr]^{1 / 2} - 1 \biggr\}^{-1 / 2} \biggl[ 1 + 8 \lambda_1^2 \lambda_2^2 \lambda_3^4\biggr]^{-1 / 2} (16\lambda_1^2 \lambda_2 \lambda_3^4) \, , </math> |
<math>~\frac{\partial x}{\partial \lambda_3}</math> |
<math>~=</math> |
<math>~ -\frac{3}{4\lambda_3^{5/ 2}} \biggl\{ \biggl[ 1 + 8 \lambda_1^2 \lambda_2^2 \lambda_3^4\biggr]^{1 / 2} - 1 \biggr\}^{1 / 2} + \frac{1}{4\lambda_3^{3/ 2}} \biggl\{ \biggl[ 1 + 8 \lambda_1^2 \lambda_2^2 \lambda_3^4\biggr]^{1 / 2} - 1 \biggr\}^{- 1 / 2} \frac{\partial}{\partial \lambda_3}\biggl[ 1 + 8 \lambda_1^2 \lambda_2^2 \lambda_3^4\biggr]^{1 / 2} </math> |
|
<math>~=</math> |
<math>~ -\frac{3}{4\lambda_3^{5/ 2}} \biggl\{ \biggl[ 1 + 8 \lambda_1^2 \lambda_2^2 \lambda_3^4\biggr]^{1 / 2} - 1 \biggr\}^{1 / 2} + \frac{1}{8\lambda_3^{3/ 2}} \biggl\{ \biggl[ 1 + 8 \lambda_1^2 \lambda_2^2 \lambda_3^4\biggr]^{1 / 2} - 1 \biggr\}^{- 1 / 2} \biggl[ 1 + 8 \lambda_1^2 \lambda_2^2 \lambda_3^4\biggr]^{-1 / 2} (32 \lambda_1^2 \lambda_2^2 \lambda_3^3) \, . </math> |
For convenience, let's define,
<math>~\Lambda^2</math> |
<math>~\equiv</math> |
<math>~1 + 8\lambda_1^2 \lambda_2^2 \lambda_3^4 </math> |
<math>~\Rightarrow ~~~ \lambda_1^2 \lambda_2^2 \lambda_3^4 </math> |
<math>~\equiv</math> |
<math>~\frac{1}{8}\biggl( \Lambda^2 - 1\biggr) \, .</math> |
Then these partial derivatives may be rewritten as,
<math>~\frac{\partial z}{\partial \lambda_1}</math> |
<math>~=</math> |
<math>~ \frac{(1-\lambda_2^2)^{1 / 2}}{p} \, , </math> |
<math>~\frac{\partial z}{\partial \lambda_2}</math> |
<math>~=</math> |
<math>~ -\frac{\lambda_1 \lambda_2}{p(1 - \lambda_2^2)^{1 / 2}} \, , </math> |
<math>~\frac{\partial z}{\partial \lambda_3}</math> |
<math>~=</math> |
<math>~ 0 \, , </math> |
<math>~\frac{\partial y}{\partial \lambda_1}</math> |
<math>~=</math> |
<math>~ \frac{2\lambda_1 \lambda_2^2 \lambda_3^2}{\Lambda} \, , </math> |
<math>~\frac{\partial y}{\partial \lambda_2}</math> |
<math>~=</math> |
<math>~ \frac{2\lambda_1^2 \lambda_2 \lambda_3^2}{\Lambda} \, , </math> |
<math>~\frac{\partial y}{\partial \lambda_3}</math> |
<math>~=</math> |
<math>~\frac{(\Lambda - 1)}{2\lambda_3^3 \Lambda} \, . </math> |
<math>~\frac{\partial x}{\partial \lambda_1}</math> |
<math>~=</math> |
<math>~ \frac{1}{4\lambda_3^{3/ 2}} \biggl\{ \biggl[ 1 + 8 \lambda_1^2 \lambda_2^2 \lambda_3^4\biggr]^{1 / 2} - 1 \biggr\}^{-1 / 2} \frac{\partial}{\partial \lambda_1}\biggl[ 1 + 8 \lambda_1^2 \lambda_2^2 \lambda_3^4\biggr]^{1 / 2} </math> |
|
<math>~=</math> |
<math>~ \frac{1}{8\lambda_3^{3/ 2}} \biggl\{ \biggl[ 1 + 8 \lambda_1^2 \lambda_2^2 \lambda_3^4\biggr]^{1 / 2} - 1 \biggr\}^{-1 / 2} \biggl[ 1 + 8 \lambda_1^2 \lambda_2^2 \lambda_3^4\biggr]^{-1 / 2} (16\lambda_1 \lambda_2^2 \lambda_3^4) \, , </math> |
<math>~\frac{\partial x}{\partial \lambda_2}</math> |
<math>~=</math> |
<math>~ \frac{1}{4\lambda_3^{3/ 2}} \biggl\{ \biggl[ 1 + 8 \lambda_1^2 \lambda_2^2 \lambda_3^4\biggr]^{1 / 2} - 1 \biggr\}^{-1 / 2} \frac{\partial}{\partial \lambda_2}\biggl[ 1 + 8 \lambda_1^2 \lambda_2^2 \lambda_3^4\biggr]^{1 / 2} </math> |
|
<math>~=</math> |
<math>~ \frac{1}{8\lambda_3^{3/ 2}} \biggl\{ \biggl[ 1 + 8 \lambda_1^2 \lambda_2^2 \lambda_3^4\biggr]^{1 / 2} - 1 \biggr\}^{-1 / 2} \biggl[ 1 + 8 \lambda_1^2 \lambda_2^2 \lambda_3^4\biggr]^{-1 / 2} (16\lambda_1^2 \lambda_2 \lambda_3^4) \, , </math> |
<math>~\frac{\partial x}{\partial \lambda_3}</math> |
<math>~=</math> |
<math>~ -\frac{3}{4\lambda_3^{5/ 2}} \biggl\{ \biggl[ 1 + 8 \lambda_1^2 \lambda_2^2 \lambda_3^4\biggr]^{1 / 2} - 1 \biggr\}^{1 / 2} + \frac{1}{4\lambda_3^{3/ 2}} \biggl\{ \biggl[ 1 + 8 \lambda_1^2 \lambda_2^2 \lambda_3^4\biggr]^{1 / 2} - 1 \biggr\}^{- 1 / 2} \frac{\partial}{\partial \lambda_3}\biggl[ 1 + 8 \lambda_1^2 \lambda_2^2 \lambda_3^4\biggr]^{1 / 2} </math> |
|
<math>~=</math> |
<math>~ -\frac{3}{4\lambda_3^{5/ 2}} \biggl\{ \biggl[ 1 + 8 \lambda_1^2 \lambda_2^2 \lambda_3^4\biggr]^{1 / 2} - 1 \biggr\}^{1 / 2} + \frac{1}{8\lambda_3^{3/ 2}} \biggl\{ \biggl[ 1 + 8 \lambda_1^2 \lambda_2^2 \lambda_3^4\biggr]^{1 / 2} - 1 \biggr\}^{- 1 / 2} \biggl[ 1 + 8 \lambda_1^2 \lambda_2^2 \lambda_3^4\biggr]^{-1 / 2} (32 \lambda_1^2 \lambda_2^2 \lambda_3^3) \, . </math> |
See Also
© 2014 - 2021 by Joel E. Tohline |