Difference between revisions of "User:Tohline/Appendix/Mathematics/ScaleFactors"
Line 10: | Line 10: | ||
==Getting Started== | ==Getting Started== | ||
Following [http://homepages.engineering.auckland.ac.nz/~pkel015/SolidMechanicsBooks/Part_III/ Kelly], we will use <math>~\hat{e}_i</math> and <math>~x_i</math> when referencing, respectively, the three (''i'' = 1,3) basis vectors and coordinate "curves" of the Cartesian coordinate system; and we will use <math>~\hat{g}_i</math> and <math>~\Theta_i</math> when referencing, respectively, the three (''i'' = 1,3) basis vectors and coordinate curves of some other, curvilinear coordinate system. | Following [http://homepages.engineering.auckland.ac.nz/~pkel015/SolidMechanicsBooks/Part_III/ Kelly], we will use <math>~\hat{e}_i</math> and <math>~x_i</math> when referencing, respectively, the three (''i'' = 1,3) basis vectors and coordinate "curves" of the Cartesian coordinate system; and we will use <math>~\hat{g}_i</math> and <math>~\Theta_i</math> when referencing, respectively, the three (''i'' = 1,3) basis vectors and coordinate curves of some other, curvilinear coordinate system. | ||
===2D Oblique Coordinate System Example=== | |||
Consider a vector, <math>~\vec{v}</math>, which in Cartesian coordinates is described by the expression, | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~\vec{v}</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
\hat{e}_1 v_x + \hat{e}_2 v_y \, . | |||
</math> | |||
</td> | |||
</tr> | |||
</table> | |||
Referencing Figure 1.16.4 of [http://homepages.engineering.auckland.ac.nz/~pkel015/SolidMechanicsBooks/Part_III/ Kelly's Part III], we appreciate that in a two-dimensional (2D) '''oblique''' coordinate system where <math>~\alpha</math> is the (less than 90°) angle between the two basis vectors, the same vector will be represented by the expression, | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~\vec{v}</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
\hat{g}_1 v^1 + \hat{g}_2 v^2 \, . | |||
</math> | |||
</td> | |||
</tr> | |||
</table> | |||
The angle between <math>~\hat{g}_2</math> and <math>~\hat{e}_2</math> is, (π/2 - α), so we appreciate that, | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~v_y</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~v^2\cos\biggl(\frac{\pi}{2} - \alpha \biggr) = v^2 \sin\alpha</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
<math>~\Rightarrow~~~v^2</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~\frac{v_y}{\sin\alpha} \, .</math> | |||
</td> | |||
</tr> | |||
</table> | |||
Next, from a visual inspection of the figure, we appreciate that <math>~v_x</math> is longer than <math>~v^1</math> by the amount, <math>~v^2\cos\alpha</math>; that is, | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~v_x</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~v^1 + v^2\cos\alpha = v_1 + \frac{v_y}{\tan\alpha}</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
<math>~\Rightarrow ~~~ v^1</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~v_x - \frac{v_y}{\tan\alpha} \, .</math> | |||
</td> | |||
</tr> | |||
</table> | |||
(These are the same pair of transformation relations that appear as Eq. (1.16.3) of [http://homepages.engineering.auckland.ac.nz/~pkel015/SolidMechanicsBooks/Part_III/ Kelly's Part III].) | |||
=See Also= | =See Also= | ||
{{LSU_HBook_footer}} | {{LSU_HBook_footer}} |
Revision as of 17:58, 2 March 2021
Scale Factors for Orthogonal Curvilinear Coordinate Systems
Here we lean heavily on the class notes and associated references that have been provided by P. A. Kelly in a collection titled, Mechanics Lecture Notes: An Introduction to Solid Mechanics, as they appeared online in early 2021. See especially the subsection of Part III in which the properties of Vectors and Tensors are discussed.
| Tiled Menu | Tables of Content | Banner Video | Tohline Home Page | |
Getting Started
Following Kelly, we will use <math>~\hat{e}_i</math> and <math>~x_i</math> when referencing, respectively, the three (i = 1,3) basis vectors and coordinate "curves" of the Cartesian coordinate system; and we will use <math>~\hat{g}_i</math> and <math>~\Theta_i</math> when referencing, respectively, the three (i = 1,3) basis vectors and coordinate curves of some other, curvilinear coordinate system.
2D Oblique Coordinate System Example
Consider a vector, <math>~\vec{v}</math>, which in Cartesian coordinates is described by the expression,
<math>~\vec{v}</math> |
<math>~=</math> |
<math>~ \hat{e}_1 v_x + \hat{e}_2 v_y \, . </math> |
Referencing Figure 1.16.4 of Kelly's Part III, we appreciate that in a two-dimensional (2D) oblique coordinate system where <math>~\alpha</math> is the (less than 90°) angle between the two basis vectors, the same vector will be represented by the expression,
<math>~\vec{v}</math> |
<math>~=</math> |
<math>~ \hat{g}_1 v^1 + \hat{g}_2 v^2 \, . </math> |
The angle between <math>~\hat{g}_2</math> and <math>~\hat{e}_2</math> is, (π/2 - α), so we appreciate that,
<math>~v_y</math> |
<math>~=</math> |
<math>~v^2\cos\biggl(\frac{\pi}{2} - \alpha \biggr) = v^2 \sin\alpha</math> |
<math>~\Rightarrow~~~v^2</math> |
<math>~=</math> |
<math>~\frac{v_y}{\sin\alpha} \, .</math> |
Next, from a visual inspection of the figure, we appreciate that <math>~v_x</math> is longer than <math>~v^1</math> by the amount, <math>~v^2\cos\alpha</math>; that is,
<math>~v_x</math> |
<math>~=</math> |
<math>~v^1 + v^2\cos\alpha = v_1 + \frac{v_y}{\tan\alpha}</math> |
<math>~\Rightarrow ~~~ v^1</math> |
<math>~=</math> |
<math>~v_x - \frac{v_y}{\tan\alpha} \, .</math> |
(These are the same pair of transformation relations that appear as Eq. (1.16.3) of Kelly's Part III.)
See Also
© 2014 - 2021 by Joel E. Tohline |