Difference between revisions of "User:Tohline/Appendix/Ramblings/Hybrid Scheme Implications"

From VistrailsWiki
Jump to navigation Jump to search
Line 22: Line 22:
===Principal Governing Equations===
===Principal Governing Equations===


Quoting from [Ref01] … Among the [[User:Tohline/PGE#Principal_Governing_Equations|principal governing equations]] we have included the
Quoting from [Ref01] … Among the [[User:Tohline/PGE#Principal_Governing_Equations|principal governing equations]] we have included the ''inertial-frame'',


<div align="center">
<div align="center">
Line 34: Line 34:


</div>
</div>
Shifting into a rotating frame characterized by the angular velocity vector,
<div align="center">
<math>~\vec{\Omega}_f \equiv \hat\mathbf{k} \Omega_f \, ,</math>
</div>
and applying the operations that are specified at the first few subsections of [Ref02], we recognize the following relationships &hellip;
<table border="0" cellpadding="5" align="center">
<tr>
  <td align="right">
<math>~\vec{v}_\mathrm{inertial}</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~\vec{v}_\mathrm{rot} + {\vec\Omega}_f \times \vec{x} \, ,</math>
  </td>
</tr>
<tr>
  <td align="right">
<math>~\biggl[ \frac{d \vec{v}}{dt} \biggr]_\mathrm{inertial}</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
\biggl[ \frac{d \vec{v}}{dt} \biggr]_\mathrm{rot} + 2{\vec\Omega}_f \times {\vec{v}}_\mathrm{rot}
+ {\vec\Omega}_f \times ({\vec\Omega}_f \times \vec{x}) 
</math>
  </td>
</tr>
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
\biggl[ \frac{d \vec{v}}{dt} \biggr]_\mathrm{rot} + 2{\vec\Omega}_f \times {\vec{v}}_\mathrm{rot}
- \frac{1}{2} \nabla | {\vec\Omega}_f \times \vec{x}|^2 
</math>
  </td>
</tr>
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
\biggl[ \frac{\partial \vec{v}}{\partial t} \biggr]_\mathrm{rot}
+ ({\vec{v}}_\mathrm{rot} \cdot \nabla){\vec{v}}_\mathrm{rot}
+ 2{\vec\Omega}_f \times {\vec{v}}_\mathrm{rot}
- \frac{1}{2} \nabla | {\vec\Omega}_f \times \vec{x}|^2 
\, .</math>
  </td>
</tr>
</table>






{{LSU_HBook_footer}}
{{LSU_HBook_footer}}

Revision as of 21:45, 25 August 2020

Implications of Hybrid Scheme

Whitworth's (1981) Isothermal Free-Energy Surface
|   Tiled Menu   |   Tables of Content   |  Banner Video   |  Tohline Home Page   |

Background

Key H_Book Chapters

[Ref01]   Inertial-Frame Euler Equation

[Ref02]   Traditional Description of Rotating Reference Frame

[Ref03]   Hybrid Advection Scheme

[Ref04]   Riemann S-type Ellipsoids

[Ref05]   Korycansky and Papaloizou (1996)

Principal Governing Equations

Quoting from [Ref01] … Among the principal governing equations we have included the inertial-frame,

Lagrangian Representation
of the Euler Equation,

LSU Key.png

<math>\frac{d\vec{v}}{dt} = - \frac{1}{\rho} \nabla P - \nabla \Phi</math>

[EFE], Chap. 2, §11, p. 20, Eq. (38)
[BLRY07], p. 13, Eq. (1.55)

Shifting into a rotating frame characterized by the angular velocity vector,

<math>~\vec{\Omega}_f \equiv \hat\mathbf{k} \Omega_f \, ,</math>

and applying the operations that are specified at the first few subsections of [Ref02], we recognize the following relationships …

<math>~\vec{v}_\mathrm{inertial}</math>

<math>~=</math>

<math>~\vec{v}_\mathrm{rot} + {\vec\Omega}_f \times \vec{x} \, ,</math>

<math>~\biggl[ \frac{d \vec{v}}{dt} \biggr]_\mathrm{inertial}</math>

<math>~=</math>

<math>~ \biggl[ \frac{d \vec{v}}{dt} \biggr]_\mathrm{rot} + 2{\vec\Omega}_f \times {\vec{v}}_\mathrm{rot} + {\vec\Omega}_f \times ({\vec\Omega}_f \times \vec{x}) </math>

 

<math>~=</math>

<math>~ \biggl[ \frac{d \vec{v}}{dt} \biggr]_\mathrm{rot} + 2{\vec\Omega}_f \times {\vec{v}}_\mathrm{rot} - \frac{1}{2} \nabla | {\vec\Omega}_f \times \vec{x}|^2 </math>

 

<math>~=</math>

<math>~ \biggl[ \frac{\partial \vec{v}}{\partial t} \biggr]_\mathrm{rot} + ({\vec{v}}_\mathrm{rot} \cdot \nabla){\vec{v}}_\mathrm{rot} + 2{\vec\Omega}_f \times {\vec{v}}_\mathrm{rot} - \frac{1}{2} \nabla | {\vec\Omega}_f \times \vec{x}|^2 \, .</math>


Whitworth's (1981) Isothermal Free-Energy Surface

© 2014 - 2021 by Joel E. Tohline
|   H_Book Home   |   YouTube   |
Appendices: | Equations | Variables | References | Ramblings | Images | myphys.lsu | ADS |
Recommended citation:   Tohline, Joel E. (2021), The Structure, Stability, & Dynamics of Self-Gravitating Fluids, a (MediaWiki-based) Vistrails.org publication, https://www.vistrails.org/index.php/User:Tohline/citation