Difference between revisions of "User:Tohline/Apps/MaclaurinSpheroidSequence"

From VistrailsWiki
Jump to navigation Jump to search
Line 8: Line 8:
==Detailed Force Balance Conditions==
==Detailed Force Balance Conditions==


[[File:EFEp79.png|right|500px|Maclaurin Spheroid Sequence]]
[[File:EFE_Omega2vsEcc.png|right|500px|Maclaurin Spheroid Sequence]]
The essential structural elements of each Maclaurin spheroid model are uniquely determined once we specify the system's axis ratio, <math>~c/a</math>, or by the system's meridional-plane eccentricity, <math>~e</math>, where
The essential structural elements of each Maclaurin spheroid model are uniquely determined once we specify the system's axis ratio, <math>~c/a</math>, or by the system's meridional-plane eccentricity, <math>~e</math>, where



Revision as of 01:33, 26 July 2020


Maclaurin Spheroid Sequence

Whitworth's (1981) Isothermal Free-Energy Surface
|   Tiled Menu   |   Tables of Content   |  Banner Video   |  Tohline Home Page   |

Detailed Force Balance Conditions

Maclaurin Spheroid Sequence

The essential structural elements of each Maclaurin spheroid model are uniquely determined once we specify the system's axis ratio, <math>~c/a</math>, or by the system's meridional-plane eccentricity, <math>~e</math>, where

<math>~e</math>

<math>~\equiv</math>

<math>~\biggl[1 - \biggl(\frac{c}{a}\biggr)^2\biggr]^{1 / 2} \, ,</math>

which varies from e = 0 (spherical structure) to e = 1 (infinitesimally thin disk). According to our accompanying derivation, for a given choice of <math>~e</math>, the square of the system's equilibrium angular velocity is,

<math> ~ \omega_0^2 </math>

<math> ~= </math>

<math> 2\pi G \rho \biggl[ A_1 - A_3 (1-e^2) \biggr] \, , </math>

where,

<math> ~A_1 </math>

<math> ~= </math>

<math> \frac{1}{e^2} \biggl[\frac{\sin^{-1}e}{e} - (1-e^2)^{1/2} \biggr](1-e^2)^{1/2} \, , </math>

<math> ~A_3 </math>

<math> ~= </math>

<math> \frac{2}{e^2} \biggl[(1-e^2)^{-1/2} -\frac{\sin^{-1}e}{e} \biggr](1-e^2)^{1/2} \, . </math>

The figure shown here, on the right, essentially replicates Fig. 5 (p. 79) of [EFE]. It shows how the square of the angular velocity — in the unit <math>~\pi G\rho</math> — varies with eccentricity along the Maclaurin sequence.

Alternate Sequence Diagrams

The total angular momentum of each uniformly rotating Maclaurin spheroid is given by the expression,

<math>~L</math>

<math>~=</math>

<math>~I \omega_0 \, ,</math>

where, the moment of inertia <math>~(I)</math> and the total mass <math>~(M)</math> of a uniform-density spheroid are, respectively,

<math>~I</math>

<math>~=</math>

<math>~\biggl(\frac{2}{5}\biggr) M a^2 \, ,</math>

      and,      

<math>~M</math>

<math>~=</math>

<math>~\biggl( \frac{4\pi}{3} \biggr) \rho a^2c \, .</math>

Hence, we have,

<math>~L^2</math>

<math>~=</math>

<math>~ \frac{2^2 M^2 a^4}{5^2} \biggl[ A_1 - A_3 (1-e^2) \biggr] 2\pi G \biggl[ \frac{3}{2^2\pi} \cdot \frac{M}{a^2c} \biggr]</math>

 

<math>~=</math>

<math>~ \frac{6GM^3 {\bar{a}}}{5^2} \biggl[ A_1 - A_3 (1-e^2) \biggr]\biggl(\frac{a}{c}\biggr)^{4/3} </math>

<math>~\Rightarrow ~~~ \frac{L}{(GM^3\bar{a})^{1 / 2}}</math>

<math>~=</math>

<math>~ \frac{6^{1 / 2}}{5} \biggl[ A_1 - A_3 (1-e^2) \biggr]^{1 / 2}(1 - e^2)^{-1 / 3} \, ,</math>

where,

<math>~\bar{a}</math>

<math>~\equiv</math>

<math>~(a^2c)^{1 / 3} \, .</math>

See Also


Whitworth's (1981) Isothermal Free-Energy Surface

© 2014 - 2021 by Joel E. Tohline
|   H_Book Home   |   YouTube   |
Appendices: | Equations | Variables | References | Ramblings | Images | myphys.lsu | ADS |
Recommended citation:   Tohline, Joel E. (2021), The Structure, Stability, & Dynamics of Self-Gravitating Fluids, a (MediaWiki-based) Vistrails.org publication, https://www.vistrails.org/index.php/User:Tohline/citation