Difference between revisions of "User:Tohline/Appendix/Ramblings/Bordeaux"

From VistrailsWiki
Jump to navigation Jump to search
Line 312: Line 312:


====Leading (n  = 0) Term====
====Leading (n  = 0) Term====
=====Wong's Expression=====
Now, from our [[User:Tohline/Apps/Wong1973Potential#Attempt_.232|separate derivation]] we have,
Now, from our [[User:Tohline/Apps/Wong1973Potential#Attempt_.232|separate derivation]] we have,


Line 330: Line 331:
</tr>
</tr>
</table>
</table>
And if we make the function-argument substitution, <math>~z \rightarrow \coth\eta</math>, in the "Key Equation,"
<span id="KeyEquation">And if we make the function-argument substitution,</span> <math>~z \rightarrow \coth\eta</math>, in the "[[User:Tohline/Appendix/Equation_templates#Analytic_Expressions_.26_Plots|Key Equation]],"
{{ User:Tohline/Math/EQ_QminusHalf01 }}
 
<table border="0" cellpadding="5" align="center">
 
<tr>
<td align="right">
[[Image:LSU_Key.png|25px|link=http://www.vistrails.org/index.php/User:Tohline/Appendix/Equation_templates#Toroidal_Function_Evaluations]]
</td>
  <td align="right">
<math>~Q_{-\frac{1}{2}}(z)</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
\sqrt{ \frac{2}{z+1} } ~K\biggl( \sqrt{ \frac{2}{z+1}} \biggr)
</math>
  </td>
</tr>
<tr>
  <td align="center" colspan="4">
[https://books.google.com/books?id=MtU8uP7XMvoC&printsec=frontcover&dq=Abramowitz+and+stegun&hl=en&sa=X&ved=0ahUKEwialra5xNbaAhWKna0KHcLAASAQ6AEILDAA#v=onepage&q=Abramowitz%20and%20stegun&f=false Abramowitz &amp; Stegun (1995)], p. 337, eq. (8.13.3)
  </td>
</table>
we can write,
we can write,
<table border="0" cellpadding="5" align="center">
<table border="0" cellpadding="5" align="center">


Line 424: Line 447:
</table>
</table>


=====Thin-Ring Evaluation of C<sub>0</sub>=====
In an [[User:Tohline/Apps/Wong1973Potential#Thin_Ring_Approximation|accompanying discussion of the thin-ring approximation]], we showed that as <math>~\cosh\eta_0 \rightarrow \infty</math>
In an [[User:Tohline/Apps/Wong1973Potential#Thin_Ring_Approximation|accompanying discussion of the thin-ring approximation]], we showed that as <math>~\cosh\eta_0 \rightarrow \infty</math>
<table border="0" cellpadding="5" align="center">
<table border="0" cellpadding="5" align="center">
Line 459: Line 483:
</tr>
</tr>
</table>
</table>
=====More General Evaluation of C<sub>0</sub>=====
<font color="red">NOTE of CAUTION:</font>  In our [[#KeyEquation|above evaluation of the toroidal function]], <math>~Q_{-\frac{1}{2}}(z)</math>, we appropriately associated the function argument, <math>~z</math>, with the hyperbolic-cotangent of <math>~\eta</math>; that is, we made the substitution, <math>~z \rightarrow \coth\eta</math>.  Here, as we assess the behavior of, and evaluate, the leading coefficient, <math>~C_0</math>, an alternate substitution is appropriate, namely, <math>~z_0 \rightarrow \cosh\eta_0</math>; we affix the subscript zero to this function argument in an effort to minimize possible confusion.
More generally, though, drawing from our [[User:Tohline/Appendix/Equation_templates#Analytic_Expressions_.26_Plots|accompanying tabulation of ''Toroidal Function Evaluations'']], we have,
More generally, though, drawing from our [[User:Tohline/Appendix/Equation_templates#Analytic_Expressions_.26_Plots|accompanying tabulation of ''Toroidal Function Evaluations'']], we have,
<table border="0" cellpadding="5" align="center">
<table border="0" cellpadding="5" align="center">
Line 531: Line 560:
<table border="1" align="center" width="80%" cellpadding="10">
<table border="1" align="center" width="80%" cellpadding="10">
<tr><td align="left">
<tr><td align="left">
Looking back at our [[User:Tohline/Apps/Wong1973Potential#Exterior_Solution_.28n_.3D_0.29|previous numerical evaluation]] of <math>~C_0(\cosh\eta_0)</math> when <math>~\cosh\eta_0 = 3 ~~\Rightarrow ~~~ k_0 = 2^{-1 / 2}</math>, we see that,
Looking back at our [[User:Tohline/Apps/Wong1973Potential#Exterior_Solution_.28n_.3D_0.29|previous numerical evaluation]] of <math>~C_0(\cosh\eta_0)</math> when <math>~z_0 = \cosh\eta_0 = 3 ~~\Rightarrow ~~~ k_0 = 2^{-1 / 2}</math>, we see that,
<table border="0" cellpadding="5" align="center">
<table border="0" cellpadding="5" align="center">


<tr>
<tr>
   <td align="right">
   <td align="right">
[[User:Tohline/Appendix/Equation_templates#Toroidal_Function_Evaluations|Appendix Expression:]] <math>~Q_{-\tfrac{1}{2}}(z)</math>
[[User:Tohline/Appendix/Equation_templates#Toroidal_Function_Evaluations|Appendix Expression:]] <math>~Q_{-\tfrac{1}{2}}(z_0)</math>
   </td>
   </td>
   <td align="center">
   <td align="center">
Line 560: Line 589:
<tr>
<tr>
   <td align="right">
   <td align="right">
[[User:Tohline/Appendix/Equation_templates#Toroidal_Function_Evaluations|Appendix Expression:]] <math>~Q_{+\tfrac{1}{2}}(z)</math>
[[User:Tohline/Appendix/Equation_templates#Toroidal_Function_Evaluations|Appendix Expression:]] <math>~Q_{+\tfrac{1}{2}}(z_0)</math>
   </td>
   </td>
   <td align="center">
   <td align="center">
Line 584: Line 613:
<tr>
<tr>
   <td align="right">
   <td align="right">
[[User:Tohline/Appendix/Equation_templates#Toroidal_Function_Evaluations|Appendix Expression:]] <math>~Q^2_{-\tfrac{1}{2}}(z)</math>
[[User:Tohline/Appendix/Equation_templates#Toroidal_Function_Evaluations|Appendix Expression:]] <math>~Q^2_{-\tfrac{1}{2}}(z_0)</math>
   </td>
   </td>
   <td align="center">
   <td align="center">
Line 608: Line 637:
<tr>
<tr>
   <td align="right">
   <td align="right">
[[User:Tohline/Appendix/Mathematics/ToroidalSynopsis01#Evaluating_Q2.CE.BD|Additional derivation:]] <math>~Q^2_{+\tfrac{1}{2}}(z)</math>
[[User:Tohline/Appendix/Mathematics/ToroidalSynopsis01#Evaluating_Q2.CE.BD|Additional derivation:]] <math>~Q^2_{+\tfrac{1}{2}}(z_0)</math>
   </td>
   </td>
   <td align="center">
   <td align="center">
Line 615: Line 644:
   <td align="left">
   <td align="left">
<math>~
<math>~
-~\frac{1}{2^2}\biggl\{ z k~K ( k )   
-~\frac{1}{2^2}\biggl\{ z k_0~K ( k_0 )   
~-~(z^2+3) \biggl[ \frac{2}{(z-1)(z^2-1)} \biggr]^{1 / 2} E(k)\biggr\}  
~-~(z^2+3) \biggl[ \frac{2}{(z-1)(z^2-1)} \biggr]^{1 / 2} E(k_0)\biggr\}  
</math>
</math>
   </td>
   </td>

Revision as of 17:36, 23 June 2020

Université de Bordeaux

Whitworth's (1981) Isothermal Free-Energy Surface
|   Tiled Menu   |   Tables of Content   |  Banner Video   |  Tohline Home Page   |

Spheroid-Ring Systems

Through a research collaboration at the Université de Bordeaux, B. Basillais & J. -M. Huré (2019), MNRAS, 487, 4504-4509 have published a paper titled, Rigidly Rotating, Incompressible Spheroid-Ring Systems: New Bifurcations, Critical Rotations, and Degenerate States.


Exterior Gravitational Potential of Toroids

J. -M. Huré, B. Basillais, V. Karas, A. Trova, & O. Semerák (2020), MNRAS, 494, 5825-5838 have published a paper titled, The Exterior Gravitational Potential of Toroids. Here we examine how their work relates to the published work by C.-Y. Wong (1973, Annals of Physics, 77, 279), which we have separately discussed in detail.

Their Presentation

On an initial reading, it appears as though the most relevant section of the Huré, et al. (2020) paper is §8 titled, The Solid Torus. They write the gravitational potential in terms of the series expansion,

<math>~\Psi_\mathrm{grav}(\vec{r})</math>

<math>~\approx</math>

<math>~ \Psi_0 + \sum\limits_{n=1}^N \Psi_n \, , </math>

Huré, et al. (2020), §7, p. 5831, Eq. (42)

where, after setting <math>~M_\mathrm{tot} = 2\pi^2\rho_0 b^2 R_c </math> and acknowledging that <math>~V_{0,0} = 1 \, ,</math> we can write,

<math>~\Psi_0 </math>

<math>~=</math>

<math>~ - \frac{GM_\mathrm{tot}}{r} \biggl[ \frac{r}{\Delta_0} \cdot \frac{2}{\pi} \boldsymbol{K}(k_0) \biggr] </math>

Huré, et al. (2020), §8, p. 5832, Eqs. (52) & (53)

and,

<math>~\frac{1}{e^2} \biggl[ \Psi_1 + \Psi_2 \biggr]</math>

<math>~=</math>

<math>~ - \frac{G\pi \rho_0 R_c b^2}{4 (k')^2 \Delta_0^3} \biggl\{ [\Delta_0^2 - 2R_c(R_c + R)]\boldsymbol{E}(k) - (k')^2 \Delta_0^2 \boldsymbol{K}(k) \biggr\} \, . </math>

Huré, et al. (2020), §8, p. 5832, Eq. (54)

Note that the argument of the elliptic integral functions is,

<math>~k</math>

<math>~\equiv</math>

<math>~ \frac{2\sqrt{\varpi R}}{\Delta} </math>

    where,    

<math>~\Delta</math>

<math>~\equiv</math>

<math>~ \biggl[ (R + \varpi)^2 + (Z-z)^2 \biggr]^{1 / 2} \, . </math>

Huré, et al. (2020), §2, p. 5826, Eqs. (4) & (5)

Our Presentation of Wong's (1973) Result

Setup

From our accompanying discussion of Wong's (1973) derivation, the exterior potential is given by the expression,

<math>~\biggl( \frac{a}{GM} \biggr) \Phi_\mathrm{W}(\eta,\theta)</math>

<math>~=</math>

<math>~ -D_0 (\cosh\eta - \cos\theta)^{1 / 2} ~\sum_{n=0}^{\mathrm{nmax}} \epsilon_n \cos(n\theta) C_n(\cosh\eta_0)P_{n-\frac{1}{2}}(\cosh\eta) \, , </math>

where,

<math>~D_0 </math>

<math>~\equiv</math>

<math>~ \frac{2^{3/2} }{3\pi^2} \biggl[ \frac{\sinh^3\eta_0}{\cosh\eta_0}\biggr] = \frac{2^{3/2} }{3\pi^2} \biggl[\frac{(R^2 - d^2)^{3 / 2}}{d^2 R} \biggr] \, ,</math>

<math>~C_n(\cosh\eta_0)</math>

<math>~\equiv</math>

<math>~(n+\tfrac{1}{2})Q_{n+\frac{1}{2}}(\cosh \eta_0) Q_{n - \frac{1}{2}}^2(\cosh \eta_0) - (n - \tfrac{3}{2}) Q_{n - \frac{1}{2}}(\cosh \eta_0)~Q^2_{n + \frac{1}{2}}(\cosh \eta_0) \, </math>

and where, in terms of the major ( R ) and minor ( d ) radii of the torus — or their ratio, ε ≡ d/R,

<math>~\cosh\eta_0</math>

<math>~=</math>

<math>~\frac{R}{d} = \frac{1}{\epsilon} \, ,</math>

<math>~\sinh\eta_0</math>

<math>~=</math>

<math>~\frac{a}{d} = \frac{1}{d}\biggl[ R^2 - d^2 \biggr]^{1 / 2} = \frac{1}{\epsilon} \biggl[1 - \epsilon^2 \biggr]^{1 / 2} \, .</math>

These expressions incorporate a number of basic elements of a toroidal coordinate system. In what follows, we will also make use of the following relations:

<math>~\varpi</math>

<math>~=</math>

<math>~\frac{a\sinh\eta}{(\cosh\eta - \cos\theta)}</math>

     <math>~\Rightarrow ~</math>     

<math>~\cos\theta</math>

<math>~=</math>

<math>~\cosh\eta - \frac{a\sinh\eta}{\varpi}</math>

<math>~z - Z_0</math>

<math>~=</math>

<math>~\frac{a\sin\theta}{(\cosh\eta - \cos\theta)}</math>

     <math>~\Rightarrow ~</math>     

<math>~\sin\theta</math>

<math>~=</math>

<math>~\frac{(z - Z_0)}{\varpi} \cdot \sinh\eta </math>

Given that (sin2θ + cos2θ) = 1, we have,

<math>~1</math>

<math>~=</math>

<math>~ \biggl[ \frac{(z - Z_0)}{\varpi} \cdot \sinh\eta \biggr]^2 + \biggl[\cosh\eta - \frac{a\sinh\eta}{\varpi}\biggr]^2 </math>

<math>~\Rightarrow ~~~ \coth\eta</math>

<math>~=</math>

<math>~ \frac{1}{2a\varpi}\biggl[\varpi^2 + a^2 + (z - Z_0)^2 \biggr] \, . </math>

We deduce as well that,

<math>~\frac{2}{\coth\eta + 1}</math>

<math>~=</math>

<math>~ \frac{4a\varpi}{(\varpi + a)^2 + (z - Z_0)^2} \, , </math>        and,

<math>~\sinh\eta + \cosh\eta</math>

<math>~=</math>

<math>~ \frac{\varpi^2 + a^2 + (z - Z_0)^2}{(\varpi + a)^2 + (z - Z_0)^2} \, . </math>

Leading (n = 0) Term

Wong's Expression

Now, from our separate derivation we have,

<math>~P_{-1 / 2}(\cosh\eta)</math>

<math>~=</math>

<math>~ \frac{\sqrt{2}}{\pi}~ (\sinh\eta)^{-1 / 2} Q_{-1 / 2}(\coth\eta) \, . </math>

And if we make the function-argument substitution, <math>~z \rightarrow \coth\eta</math>, in the "Key Equation,"

LSU Key.png

<math>~Q_{-\frac{1}{2}}(z)</math>

<math>~=</math>

<math>~ \sqrt{ \frac{2}{z+1} } ~K\biggl( \sqrt{ \frac{2}{z+1}} \biggr) </math>

Abramowitz & Stegun (1995), p. 337, eq. (8.13.3)

we can write,

<math>~P_{-1 / 2}(\cosh\eta)</math>

<math>~=</math>

<math>~ \frac{\sqrt{2}}{\pi}~ (\sinh\eta)^{-1 / 2} ~k \boldsymbol{K}(k) \, , </math>

where, from above, we recognize that,

<math>~ k \equiv \biggl[ \frac{2}{\coth\eta + 1} \biggr]^{1 / 2} = \biggl[ \frac{4a\varpi}{(\varpi + a)^2 + (z - Z_0)^2} \biggr]^{1 / 2} \, . </math>

So, the leading (n = 0) term gives,

<math>~\biggl( \frac{a}{GM} \biggr) \Phi_\mathrm{W0}(\eta,\theta)</math>

<math>~=</math>

<math>~ -D_0 (\cosh\eta - \cos\theta)^{1 / 2} ~C_0(\cosh\eta_0)P_{-\frac{1}{2}}(\cosh\eta) </math>

 

<math>~=</math>

<math>~ -D_0~C_0(\cosh\eta_0) \biggl[ \frac{a \sinh\eta}{\varpi} \biggr]^{1 / 2} ~\frac{\sqrt{2}}{\pi}~ (\sinh\eta)^{-1 / 2} ~k \boldsymbol{K}(k) </math>

 

<math>~=</math>

<math>~ -\frac{D_0~C_0(\cosh\eta_0)}{\pi} \biggl[ \frac{2a }{\varpi} \biggr]^{1 / 2} ~ k \boldsymbol{K}(k) </math>

 

<math>~=</math>

<math>~ - C_0(\cosh\eta_0) \cdot \frac{2^{3} }{3\pi^3} \biggl[ \frac{\sinh^3\eta_0}{\cosh\eta_0}\biggr] \frac{a}{ [ (\varpi + a)^2 + (z - Z_0)^2 ]^{1 / 2} } \cdot \boldsymbol{K}(k) \, . </math>

Thin-Ring Evaluation of C0

In an accompanying discussion of the thin-ring approximation, we showed that as <math>~\cosh\eta_0 \rightarrow \infty</math>

<math>~C_0(x)\biggr|_{x\rightarrow \infty}</math>

<math>~=</math>

<math>~\biggl( \frac{3 \pi^2}{2^2} \biggr) \frac{1}{\cosh^2\eta_0} \, . </math>

Hence, in this limit we can write,

<math>~\biggl( \frac{a}{GM} \biggr) \Phi_\mathrm{W0}(\eta,\theta)\biggr|_\mathrm{thin-ring}</math>

<math>~=</math>

<math>~ - \frac{2 }{\pi} \cancelto{1}{\biggl[\frac{\sinh\eta_0}{\cosh\eta_0}\biggr]^3 } \frac{a}{ [ (\varpi + a)^2 + (z - Z_0)^2 ]^{1 / 2} } \cdot \boldsymbol{K}(k) \, . </math>

More General Evaluation of C0

NOTE of CAUTION: In our above evaluation of the toroidal function, <math>~Q_{-\frac{1}{2}}(z)</math>, we appropriately associated the function argument, <math>~z</math>, with the hyperbolic-cotangent of <math>~\eta</math>; that is, we made the substitution, <math>~z \rightarrow \coth\eta</math>. Here, as we assess the behavior of, and evaluate, the leading coefficient, <math>~C_0</math>, an alternate substitution is appropriate, namely, <math>~z_0 \rightarrow \cosh\eta_0</math>; we affix the subscript zero to this function argument in an effort to minimize possible confusion.

More generally, though, drawing from our accompanying tabulation of Toroidal Function Evaluations, we have,

<math>~2C_0(\cosh\eta_0)</math>

<math>~=</math>

<math>~ \biggl[ Q_{+\frac{1}{2}}(\cosh \eta_0) \biggr] \biggl[ Q_{ - \frac{1}{2}}^2(\cosh \eta_0) \biggr] + 3 \biggl[ Q_{ - \frac{1}{2}}(\cosh \eta_0) \biggr] \biggl[ Q^2_{ + \frac{1}{2}}(\cosh \eta_0) \biggr] </math>

 

<math>~=</math>

<math>~ \biggl[ \cosh\eta_0 ~k_0~K(k_0) ~-~ [2(\cosh\eta_0+1)]^{1 / 2} E(k_0) \biggr] \times \biggl\{ \frac{ 4 \cosh\eta_0 ~E(k_0) - (\cosh\eta_0-1) K(k_0) }{ [2^{3} (\cosh\eta_0+1) (\cosh\eta_0-1)^{2} ]^{1 / 2}} \biggr\} </math>

 

 

<math>~ - \frac{3}{2^2} \biggl[ k_0 ~K ( k_0) \biggr] \times \biggl\{ \cosh\eta_0~ k_0~K ( k_0 ) ~-~(\cosh^2\eta_0+3) \biggl[ \frac{2}{(\cosh\eta_0 - 1)(\cosh^2\eta_0 -1)} \biggr]^{1 / 2} E(k_0)

\biggr\} \, ,

</math>

where,

<math>~k_0</math>

<math>~\equiv</math>

<math>~\biggl[ \frac{2}{\cosh\eta_0+1}\biggr]^{1 / 2} ~~~\Rightarrow ~~~ (\cosh\eta_0 + 1) = \frac{2}{k_0^2} \, .</math>

Looking back at our previous numerical evaluation of <math>~C_0(\cosh\eta_0)</math> when <math>~z_0 = \cosh\eta_0 = 3 ~~\Rightarrow ~~~ k_0 = 2^{-1 / 2}</math>, we see that,

Appendix Expression: <math>~Q_{-\tfrac{1}{2}}(z_0)</math>

<math>~=</math>

<math>~k_0 K(k_0)</math>

Hence MF53 value, <math>~Q_{-\tfrac{1}{2}}(3)</math>

<math>~=</math>

<math>~1.311028777 ~~~\Rightarrow ~~~ K(k_0) = 1.854074677</math>

Appendix Expression: <math>~Q_{+\tfrac{1}{2}}(z_0)</math>

<math>~=</math>

<math>~z~k_0 K(k_0) - [2(z+1)]^{1 / 2} E(k_0)</math>

Hence MF53 value, <math>~Q_{+\tfrac{1}{2}}(3)</math>

<math>~=</math>

<math>~0.1128885424 ~~~\Rightarrow~~~ E(k_0) = 1.350643881</math>

Appendix Expression: <math>~Q^2_{-\tfrac{1}{2}}(z_0)</math>

<math>~=</math>

<math>~[2^3(z-1)(z^2-1)]^{-1 / 2} [4zE(k_0) - (z-1)K(k_0)]</math>

Hence, <math>~Q^2_{-\tfrac{1}{2}}(3)</math>

<math>~=</math>

<math>~1.104816977</math>, which matches MF53 value

Additional derivation: <math>~Q^2_{+\tfrac{1}{2}}(z_0)</math>

<math>~=</math>

<math>~ -~\frac{1}{2^2}\biggl\{ z k_0~K ( k_0 ) ~-~(z^2+3) \biggl[ \frac{2}{(z-1)(z^2-1)} \biggr]^{1 / 2} E(k_0)\biggr\} </math>

Hence, <math>~Q^2_{+\tfrac{1}{2}}(3)</math>

<math>~=</math>

<math>~0.449302588</math>


<math>~\Rightarrow ~~~ C_0(3)</math>

<math>~=</math>

<math>~ \frac{1}{2}~Q_{+\frac{1}{2}}(3) \cdot Q_{- \frac{1}{2}}^2(3) + \frac{3}{2}~ Q_{- \frac{1}{2}}(3)\cdot Q^2_{+ \frac{1}{2}}(3) = 0.945933522 \, . </math>


Attempting to simplify this expression, we have,

<math>~2C_0(\cosh\eta_0)</math>

<math>~=</math>

<math>~ \biggl\{ \cosh\eta_0 ~k_0~K(k_0) ~-~ \biggl(\frac{2}{k_0}\biggr) E(k_0) \biggr\} \times \biggl\{ \frac{ 4 \cosh\eta_0 ~E(k_0) - (\cosh\eta_0-1) K(k_0) }{ [2^{2} k_0^{-1} (\cosh\eta_0-1) ]} \biggr\} </math>

 

 

<math>~ - \frac{3}{2^2} \biggl[ k_0 ~K ( k_0) \biggr] \times \biggl\{ \cosh\eta_0~ k_0~K ( k_0 ) ~-~(\cosh^2\eta_0+3) \biggl[ \frac{k_0^2}{(\cosh\eta_0 - 1)^2} \biggr]^{1 / 2} E(k_0)

\biggr\} 

</math>

<math>~\Rightarrow ~~~ 2^3(\cosh\eta_0 - 1)C_0(\cosh\eta_0)</math>

<math>~=</math>

<math>~ \biggl\{ \cosh\eta_0 ~k_0^2~K(k_0) ~-~ 2 E(k_0) \biggr\} \times \biggl\{ 4 \cosh\eta_0 ~E(k_0) - (\cosh\eta_0-1) K(k_0) \biggr\} </math>

 

 

<math>~ - 3 k_0 ~K ( k_0) \times \biggl\{ \cosh\eta_0(\cosh\eta_0 - 1)~ k_0~K ( k_0 ) ~-~(\cosh^2\eta_0+3) k_0 E(k_0)

\biggr\} 

</math>

 

<math>~=</math>

<math>~ -~K(k_0)\cdot K(k_0) \biggl[ (\cosh\eta_0-1) \cdot \cosh\eta_0 ~k_0^2 + 3\cosh\eta_0~ (\cosh\eta_0~-1)k_0^2\biggr] </math>

 

 

<math>~ + K(k_0)\cdot E(k_0) \biggl[ 2^2 \cosh^2\eta_0 ~k_0^2 + 2(\cosh\eta_0 ~-1) + 3k_0^2 (\cosh^2\eta_0 ~ + 3)\biggr] - E(k_0)\cdot E(k_0) \biggl[2^3\cosh\eta_0 \biggr] </math>

<math>~\Rightarrow ~~~ \biggl[ \frac{ 2^3(\cosh\eta_0 - 1)}{k_0^2} \biggr] C_0(\cosh\eta_0)</math>

<math>~=</math>

<math>~ -~K(k_0)\cdot K(k_0) \biggl[ (\cosh\eta_0-1) \cdot \cosh\eta_0 + 3\cosh\eta_0~ (\cosh\eta_0~-1) \biggr] </math>

 

 

<math>~ + K(k_0)\cdot E(k_0) \biggl[ 2^2 \cosh^2\eta_0 + \frac{2}{k_0^2}(\cosh\eta_0 ~-1) + 3 (\cosh^2\eta_0 ~ + 3)\biggr] - E(k_0)\cdot E(k_0) \biggl[\frac{2^3\cosh\eta_0}{k_0^2} \biggr] </math>

<math>~\Rightarrow ~~~ (\cosh^2\eta_0 - 1) C_0(\cosh\eta_0)</math>

<math>~=</math>

<math>~ K(k_0)\cdot K(k_0) \biggl[ \cosh\eta_0(1 - \cosh\eta_0) \biggr] + 2K(k_0)\cdot E(k_0) \biggl[ \cosh^2\eta_0 + 1\biggr] - E(k_0)\cdot E(k_0) \biggl[ \cosh\eta_0(1 + \cosh\eta_0) \biggr] </math>

This last, simplifed expression gives, as above, <math>~C_0(3) = 0.945933523</math>. TERRIFIC!

Finally then, for any choice of <math>~\eta_0</math>,

<math>~\biggl( \frac{a}{GM} \biggr) \Phi_\mathrm{W0}(\eta,\theta)\biggr|_\mathrm{exterior}</math>

<math>~=</math>

<math>~ - \frac{2^{3} }{3\pi^3} \biggl[ \frac{\sinh\eta_0}{\cosh\eta_0}\biggr] \frac{a}{ [ (\varpi + a)^2 + (z - Z_0)^2 ]^{1 / 2} } \cdot \boldsymbol{K}(k) </math>

 

 

<math>~ \times \biggl\{ K(k_0)\cdot K(k_0) [ \cosh\eta_0(1 - \cosh\eta_0) ] + 2K(k_0)\cdot E(k_0) l[ \cosh^2\eta_0 + 1 ] - E(k_0)\cdot E(k_0) [ \cosh\eta_0(1 + \cosh\eta_0) ] \biggr\} \, . </math>



Whitworth's (1981) Isothermal Free-Energy Surface

© 2014 - 2021 by Joel E. Tohline
|   H_Book Home   |   YouTube   |
Appendices: | Equations | Variables | References | Ramblings | Images | myphys.lsu | ADS |
Recommended citation:   Tohline, Joel E. (2021), The Structure, Stability, & Dynamics of Self-Gravitating Fluids, a (MediaWiki-based) Vistrails.org publication, https://www.vistrails.org/index.php/User:Tohline/citation