Difference between revisions of "User:Tohline/Appendix/Ramblings/Bordeaux"

From VistrailsWiki
Jump to navigation Jump to search
Line 12: Line 12:
[https://ui.adsabs.harvard.edu/abs/2020MNRAS.494.5825H/abstract J. -M. Huré, B. Basillais, V. Karas, A. Trova, & O. Semerák (2020), MNRAS, 494, 5825-5838] have published a paper titled, ''The Exterior Gravitational Potential of Toroids.''  Here we examine how their work relates to the published work by [http://adsabs.harvard.edu/abs/1973AnPhy..77..279W C.-Y. Wong (1973, Annals of Physics, 77, 279)], which we have separately [[User:Tohline/Apps/Wong1973Potential#Wong.27s_.281973.29_Analytic_Potential|discussed in detail]].
[https://ui.adsabs.harvard.edu/abs/2020MNRAS.494.5825H/abstract J. -M. Huré, B. Basillais, V. Karas, A. Trova, & O. Semerák (2020), MNRAS, 494, 5825-5838] have published a paper titled, ''The Exterior Gravitational Potential of Toroids.''  Here we examine how their work relates to the published work by [http://adsabs.harvard.edu/abs/1973AnPhy..77..279W C.-Y. Wong (1973, Annals of Physics, 77, 279)], which we have separately [[User:Tohline/Apps/Wong1973Potential#Wong.27s_.281973.29_Analytic_Potential|discussed in detail]].


On an initial reading, it appears as though the most relevant section of the [https://ui.adsabs.harvard.edu/abs/2020MNRAS.494.5825H/abstract Hur&eacute;, et al. (2020)] paper is &sect;8 titled, ''The Solid Torus.''  They state that the gravitational potential outside of an homogeneous (circular cross-section) torus with (major, minor) radii (R<sub>C</sub>, b) is,
===Their Presentation===
On an initial reading, it appears as though the most relevant section of the [https://ui.adsabs.harvard.edu/abs/2020MNRAS.494.5825H/abstract Hur&eacute;, et al. (2020)] paper is &sect;8 titled, ''The Solid Torus.''  They write the gravitational potential in terms of the series expansion,
<div align="center">
<div align="center">
<table border="0" cellpadding="5" align="center">
<table border="0" cellpadding="5" align="center">
Line 21: Line 22:
   </td>
   </td>
   <td align="center">
   <td align="center">
<math>~=</math>
<math>~\approx</math>
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>~
<math>~
-4G\rho_0 \int_0^b \int_0^{2\pi} a\kappa b' d\theta db' \, ,
\Psi_0 + \sum\limits_{n=1}^N \Psi_n \, ,
</math>
</math>
   </td>
   </td>
Line 31: Line 32:
</table>
</table>


[https://ui.adsabs.harvard.edu/abs/2020MNRAS.494.5825H/abstract Hur&eacute;, et al. (2020)], &sect;8, p. 5831, Eq. (48)
[https://ui.adsabs.harvard.edu/abs/2020MNRAS.494.5825H/abstract Hur&eacute;, et al. (2020)], &sect;7, p. 5831, Eq. (42)
</div>
</div>
where, the function,
where, after setting <math>~M_\mathrm{tot} = 2\pi^2\rho_0 b^2 R_c </math> and acknowledging that <math>~V_{0,0} = 1 \, ,</math> we can write,
<div align="center">
<div align="center">
<math>~\kappa \equiv \frac{K(k)}{\Delta} \, ,</math>  
<table border="0" cellpadding="5" align="center">
 
<tr>
  <td align="right">
<math>~\Psi_0 </math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
- \frac{GM_\mathrm{tot}}{r} \biggl[ \frac{r}{\Delta_0} \cdot \frac{2}{\pi} \boldsymbol{K}(k_0) \biggr]
</math>
  </td>
</tr>
</table>
 
[https://ui.adsabs.harvard.edu/abs/2020MNRAS.494.5825H/abstract Hur&eacute;, et al. (2020)], &sect;8, p. 5832, Eqs. (52) &amp; (53)
</div>
</div>
<font color="orange">can be replaced by its Taylor expansion, namely</font> &hellip;
and,
<div align="center">
<div align="center">
<table border="0" cellpadding="5" align="center">
<table border="0" cellpadding="5" align="center">
Line 43: Line 61:
<tr>
<tr>
   <td align="right">
   <td align="right">
<math>~</math>
<math>~\frac{1}{e^2} \biggl[ \Psi_1 + \Psi_2 \biggr]</math>
   </td>
   </td>
   <td align="center">
   <td align="center">
Line 49: Line 67:
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>~</math>
<math>~
- \frac{G\pi \rho_0 R_c b^2}{4 (k')^2 \Delta_0^3} \biggl\{
[\Delta_0^2 - 2R_c(R_c + R)]\boldsymbol{E}(k) - (k')^2 \Delta_0^2 \boldsymbol{K}(k)
\biggr\} \, .
</math>
   </td>
   </td>
</tr>
</tr>
</table>
</table>
[https://ui.adsabs.harvard.edu/abs/2020MNRAS.494.5825H/abstract Hur&eacute;, et al. (2020)], &sect;8, p. 5832, Eq. (54)
</div>
</div>
Note that the argument of the elliptic integral functions is,
<div align="center">
<table border="0" cellpadding="5" align="center">


<tr>
  <td align="right">
<math>~k</math>
  </td>
  <td align="center">
<math>~\equiv</math>
  </td>
  <td align="left">
<math>~
\frac{2\sqrt{\varpi R}}{\Delta}
</math>
  </td>
<td align="center">&nbsp; &nbsp; where, &nbsp; &nbsp;</td>
  <td align="right">
<math>~\Delta</math>
  </td>
  <td align="center">
<math>~\equiv</math>
  </td>
  <td align="left">
<math>~
\biggl[ (R + \varpi)^2 + (Z-z)^2 \biggr]^{1 / 2} \, .
</math>
  </td>
</tr>
</table>
[https://ui.adsabs.harvard.edu/abs/2020MNRAS.494.5825H/abstract Hur&eacute;, et al. (2020)], &sect;2, p. 5826, Eqs. (4) &amp; (5)
</div>




{{LSU_HBook_footer}}
{{LSU_HBook_footer}}

Revision as of 01:28, 17 June 2020

Université de Bordeaux

Whitworth's (1981) Isothermal Free-Energy Surface
|   Tiled Menu   |   Tables of Content   |  Banner Video   |  Tohline Home Page   |

Spheroid-Ring Systems

Through a research collaboration at the Université de Bordeaux, B. Basillais & J. -M. Huré (2019), MNRAS, 487, 4504-4509 have published a paper titled, Rigidly Rotating, Incompressible Spheroid-Ring Systems: New Bifurcations, Critical Rotations, and Degenerate States.


Exterior Gravitational Potential of Toroids

J. -M. Huré, B. Basillais, V. Karas, A. Trova, & O. Semerák (2020), MNRAS, 494, 5825-5838 have published a paper titled, The Exterior Gravitational Potential of Toroids. Here we examine how their work relates to the published work by C.-Y. Wong (1973, Annals of Physics, 77, 279), which we have separately discussed in detail.

Their Presentation

On an initial reading, it appears as though the most relevant section of the Huré, et al. (2020) paper is §8 titled, The Solid Torus. They write the gravitational potential in terms of the series expansion,

<math>~\Psi_\mathrm{grav}(\vec{r})</math>

<math>~\approx</math>

<math>~ \Psi_0 + \sum\limits_{n=1}^N \Psi_n \, , </math>

Huré, et al. (2020), §7, p. 5831, Eq. (42)

where, after setting <math>~M_\mathrm{tot} = 2\pi^2\rho_0 b^2 R_c </math> and acknowledging that <math>~V_{0,0} = 1 \, ,</math> we can write,

<math>~\Psi_0 </math>

<math>~=</math>

<math>~ - \frac{GM_\mathrm{tot}}{r} \biggl[ \frac{r}{\Delta_0} \cdot \frac{2}{\pi} \boldsymbol{K}(k_0) \biggr] </math>

Huré, et al. (2020), §8, p. 5832, Eqs. (52) & (53)

and,

<math>~\frac{1}{e^2} \biggl[ \Psi_1 + \Psi_2 \biggr]</math>

<math>~=</math>

<math>~ - \frac{G\pi \rho_0 R_c b^2}{4 (k')^2 \Delta_0^3} \biggl\{ [\Delta_0^2 - 2R_c(R_c + R)]\boldsymbol{E}(k) - (k')^2 \Delta_0^2 \boldsymbol{K}(k) \biggr\} \, . </math>

Huré, et al. (2020), §8, p. 5832, Eq. (54)

Note that the argument of the elliptic integral functions is,

<math>~k</math>

<math>~\equiv</math>

<math>~ \frac{2\sqrt{\varpi R}}{\Delta} </math>

    where,    

<math>~\Delta</math>

<math>~\equiv</math>

<math>~ \biggl[ (R + \varpi)^2 + (Z-z)^2 \biggr]^{1 / 2} \, . </math>

Huré, et al. (2020), §2, p. 5826, Eqs. (4) & (5)


Whitworth's (1981) Isothermal Free-Energy Surface

© 2014 - 2021 by Joel E. Tohline
|   H_Book Home   |   YouTube   |
Appendices: | Equations | Variables | References | Ramblings | Images | myphys.lsu | ADS |
Recommended citation:   Tohline, Joel E. (2021), The Structure, Stability, & Dynamics of Self-Gravitating Fluids, a (MediaWiki-based) Vistrails.org publication, https://www.vistrails.org/index.php/User:Tohline/citation