Difference between revisions of "User:Tohline/Appendix/CGH/KAH2001"

From VistrailsWiki
Jump to navigation Jump to search
Line 223: Line 223:
   <td align="left">
   <td align="left">
<math>~ \biggl( \frac{d \lambda}{2}\biggr)^{1 / 2}  
<math>~ \biggl( \frac{d \lambda}{2}\biggr)^{1 / 2}  
\int_{-\infty}^{\infty} V(\xi) \times \exp\biggl[ \frac{i \pi \alpha^2}{2} \biggr] d\alpha
\int_{-\infty}^{\infty} V(\xi) \times \exp\biggl[ \frac{i \pi \alpha^2}{2} \biggr] d\alpha \, .
</math>
</math>
   </td>
   </td>
Line 229: Line 229:
</table>
</table>


The expression for <math>~I_\eta(y)</math> may be rewritten similarly.


----
Following [https://ui.adsabs.harvard.edu/abs/2001OptEn..40..926K/abstract KAH2001], if we evaluate the square and substitute <math>~\mu = x/(d \lambda)</math>, the expression for <math>~I_\xi(x)</math> may be written as,
<table border="0" cellpadding="5" align="center">
<tr>
  <td align="right">
<math>~I_\xi(x)</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
\int_{-\infty}^{\infty} V(\xi) \times \exp\biggl[ \frac{i \pi x^2}{d \lambda} \biggl(1 - \frac{2 \xi}{x} + \frac{\xi^2}{x^2} \biggr) \biggr] d\xi
</math>
  </td>
</tr>
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
\int_{-\infty}^{\infty} V(\xi)
\times \exp\biggl[ \frac{i \pi x^2}{d \lambda}  \biggr]
\times \exp\biggl[- \frac{i \pi x^2}{d \lambda} \biggl(\frac{2 \xi}{x}  \biggr) \biggr]
\times \exp\biggl[ \frac{i \pi x^2}{d \lambda} \biggl( \frac{\xi^2}{x^2} \biggr) \biggr]
d\xi
</math>
  </td>
</tr>
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
\exp( i \pi d \lambda \mu^2 )
\int_{-\infty}^{\infty} V(\xi)
\times \exp (- i 2\pi \mu \xi )
\times \exp \biggl[\biggl( \frac{i \pi }{d \lambda}\biggr) \xi^2 \biggr]
d\xi \, .
</math>
  </td>
</tr>
</table>
Note that all three of the exponential terms in this expression can be found in equation (7) of [https://ui.adsabs.harvard.edu/abs/2001OptEn..40..926K/abstract KAH2001].  Notice, as well, that the product of exponentials that appears under the integral may be rewritten as,
<table border="0" cellpadding="5" align="center">
<tr>
  <td align="right">
<math>~
\exp (- i 2\pi \mu \xi )
\times \exp \biggl[\biggl( \frac{i \pi }{d \lambda}\biggr) \xi^2 \biggr]
</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
\exp \biggl[i \pi \biggl( \frac{\xi^2}{d \lambda}  - 2\mu \xi \biggr) \biggr]
</math>
  </td>
</tr>
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~\exp(- i\pi d \lambda \mu^2) \times
\exp \biggl[i \pi \biggl( \frac{\xi^2}{d \lambda}  - 2\mu \xi + d\lambda \mu^2 \biggr) \biggr]
</math>
  </td>
</tr>
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~\exp(- i\pi d \lambda \mu^2) \times
\exp \biggl[i \pi \biggl( \frac{\xi}{ \sqrt{d \lambda} }  - \sqrt{d\lambda} ~\mu \biggr)^2 \biggr]
</math>
  </td>
</tr>
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~\exp(- i\pi d \lambda \mu^2) \times
\exp \biggl[\frac{ i \pi \alpha^2 }{2} \biggr] \, .
</math>
  </td>
</tr>
</table>
where &#8212; see the discussion accompanying equation (9) of [https://ui.adsabs.harvard.edu/abs/2001OptEn..40..926K/abstract KAH2001] &#8212;
<div align="center">
<math>~\alpha \equiv \frac{\sqrt{2} \xi}{ \sqrt{d \lambda} }  - \sqrt{2d\lambda} ~\mu </math>&nbsp; &nbsp; &nbsp;
<math>~\Rightarrow ~~~ d\xi = \biggl(\frac{d \lambda}{2}\biggr)^{1 / 2} d\alpha \, .</math>
</div>
Hence &#8212; see equation  (10) of [https://ui.adsabs.harvard.edu/abs/2001OptEn..40..926K/abstract KAH2001] &#8212; we may also write,
<table border="0" cellpadding="5" align="center">
<tr>
  <td align="right">
<math>~I_\xi(x)</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
\biggl(\frac{d \lambda}{2}\biggr)^{1 / 2}
\int_{-\infty}^{\infty} V(\xi)
\exp \biggl[ \frac{i \pi \alpha^2}{2} \biggr]
d\alpha \, .
</math>
  </td>
</tr>
</table>


<table border="1" align="center" width="85%" cellpadding="8"><tr><td align="left">
<table border="1" align="center" width="85%" cellpadding="8"><tr><td align="left">

Revision as of 17:04, 28 March 2020

Hologram Reconstruction Using a Digital Micromirror Device

In a paper titled, Hologram reconstruction using a digital micromirror device, T. Kreis, P. Aswendt, & R. Höfling (2001) — Optical Engineering, vol. 40, no. 6, 926 - 933), hereafter, KAH2001 — present some background theoretical development that was used to underpin work of the group at UT's Southwestern Medical Center at Dallas that Richard Muffoletto and I visited circa 2004.


Whitworth's (1981) Isothermal Free-Energy Surface
|   Tiled Menu   |   Tables of Content   |  Banner Video   |  Tohline Home Page   |

Fresnel Diffraction

According to the Wikipedia description of Fresnel diffraction, "… the electric field diffraction pattern at a point <math>~(x, y, z)</math> is given by …" the expression,

<math>~E(x, y, z)</math>

<math>~=</math>

<math>~ \frac{1}{i \lambda} \iint_{-\infty}^\infty E(x', y', 0) \biggl[ \frac{e^{i k r}}{r}\biggr] \cos\theta~ dx' dy'\, , </math>

where, <math>~E(x', y', 0)</math> is the electric field at the aperture, <math>~k \equiv 2\pi/\lambda</math> is the wavenumber, and,

<math>~r</math>

<math>~\equiv</math>

<math>~ \biggl[ z^2 + (x - x')^2 + ( y - y')^2 \biggr]^{1 / 2} = z \biggl[ 1 + \frac{(x - x')^2 + ( y - y')^2}{z^2} \biggr]^{1 / 2} = z\biggl[ 1 + \frac{(x - x')^2 + ( y - y')^2}{2z^2} - \frac{[(x - x')^2 + ( y - y')^2]^2}{8z^4} + \cdots\biggr] \, . </math>

(The infinite series in this last expression results from enlisting the binomial theorem.) For simplicity, in the discussion that follows we will assume — as in §2 of KAH2001 — that the aperture is illuminated by a monochromatic plane wave that is impinging normally onto the aperture, in which case, the angle, <math>~\theta = 0</math>.

In the Fresnel approximation, the assumption is made that, in the series expansion for <math>~r</math>, all terms beyond the first two are very small in magnitude relative to the second term. Adopting this approximation — and setting <math>~\theta = 0</math> — then leads to the expression,

<math>~E(x, y, z)</math>

<math>~\approx</math>

<math>~ \frac{1}{i z \lambda} \iint_{-\infty}^\infty E(x', y', 0) ~\biggl[ 1 - \frac{(x - x')^2 + ( y - y')^2}{2z^2} \biggr] \exp\biggl\{ i k z\biggl[ 1 + \frac{(x - x')^2 + ( y - y')^2}{2z^2}\biggr] \biggr\}~ dx' dy' </math>

 

<math>~=</math>

<math>~ \frac{e^{i k z}}{i z \lambda} \iint_{-\infty}^\infty E(x', y', 0) ~\biggl[ 1 - \frac{(x - x')^2 + ( y - y')^2}{2z^2} \biggr] \exp\biggl\{\frac{ i k}{2 z}\biggl[ (x - x')^2 + ( y - y')^2 \biggr] \biggr\}~ dx' dy' \, . </math>

If "… for the <math>~r</math> in the denominator we go one step further, and approximate it with only the first term …", then our expression results in the Fresnel diffraction integral,

<math>~E(x, y, z)</math>

<math>~\approx</math>

<math>~ \frac{e^{i k z}}{i z \lambda} \iint_{-\infty}^\infty E(x', y', 0) ~ \exp\biggl\{\frac{ i k}{2 z}\biggl[ (x - x')^2 + ( y - y')^2 \biggr] \biggr\}~ dx' dy' \, . </math>

Optical Field in the Image Plane

This same integral expression — with a slightly different leading normalization factor — appears as equation (5) of KAH2001. Referring to it as the Fresnel transform expression for the "optical field, <math>~B(x, y)</math>, in the image plane at a distance <math>~d</math> from the [aperture]," they write,

<math>~B(x,y)</math>

<math>~=</math>

<math>~ \frac{e^{i k d}}{i k d} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} U(\xi,\eta) \times \exp\biggl\{ \frac{i \pi}{d \lambda} \biggl[ (x - \xi)^2 + (y-\eta)^2 \biggr] \biggr\} d\xi d\eta </math>

 

<math>~=</math>

<math>~ \biggl[\frac{e^{i k d}}{i k d} \biggr] I_\xi(x) \cdot I_\eta(y) \, , </math>

with,

<math>~I_\xi(x)</math>

<math>~=</math>

<math>~ \int_{-\infty}^{\infty} V(\xi) \times \exp\biggl[ \frac{i \pi}{d \lambda} (x - \xi)^2 \biggr] d\xi \, , </math>

<math>~I_\eta(y)</math>

<math>~=</math>

<math>~ \int_{-\infty}^{\infty} W(\eta) \times \exp\biggl[ \frac{i \pi}{d \lambda} (y - \eta)^2 \biggr] d\eta \, , </math>

and where "… the optical field immediately in front of the [aperture]" is assumed to be of the form, <math>~U(\xi,\eta) = V(\xi)\cdot W(\eta)</math>. Following KAH2001 — especially the discussion associated with their equations (7) - (10) — if we make the substitutions,

<math>~\mu \equiv \frac{x}{d\lambda} \, ,</math>

      and,      

<math>~\alpha \equiv \frac{\sqrt{2} \xi}{ \sqrt{d \lambda} } - \sqrt{2d\lambda} ~\mu </math>      <math>~\Rightarrow ~~~ d\xi = \biggl(\frac{d \lambda}{2}\biggr)^{1 / 2} d\alpha \, ,</math>

the expression for <math>~I_\xi(x)</math> may be written as,

<math>~I_\xi(x)</math>

<math>~=</math>

<math>~ \int_{-\infty}^{\infty} V(\xi) \times \exp\biggl\{ \frac{i \pi}{d \lambda} \biggl[ d \lambda \mu - \frac{\sqrt{d\lambda}}{\sqrt{2}} \biggl( \alpha + \sqrt{2 d\lambda}~\mu \biggr) \biggr]^2 \biggr\} \biggl( \frac{d \lambda}{2}\biggr)^{1 / 2} d\alpha </math>

 

<math>~=</math>

<math>~ \int_{-\infty}^{\infty} V(\xi) \times \exp\biggl\{ i \pi d \lambda \biggl[ \mu - \frac{1}{\sqrt{2d \lambda}} \biggl( \alpha + \sqrt{2 d\lambda}~\mu \biggr) \biggr]^2 \biggr\} \biggl( \frac{d \lambda}{2}\biggr)^{1 / 2} d\alpha </math>

 

<math>~=</math>

<math>~ \biggl( \frac{d \lambda}{2}\biggr)^{1 / 2} \int_{-\infty}^{\infty} V(\xi) \times \exp\biggl[ \frac{i \pi \alpha^2}{2} \biggr] d\alpha \, . </math>

The expression for <math>~I_\eta(y)</math> may be rewritten similarly.


As a point of comparison, in our accompanying discussion of 1D parallel apertures (specifically, the subsection titled, Case 1), we have presented the following expression for the y-coordinate variation of the optical field immediately in front of the aperture:


<math>~A(y_1)</math>

<math>~\approx</math>

<math>~ e^{i 2\pi L/\lambda }\biggl[ \frac{w}{2\beta_1} \biggr] \int a_0(\Theta) e^{i\phi(\Theta)} \cdot e^{-i \Theta } d\Theta \, , </math>

where,

<math>~\frac{1}{\beta_1}</math>

<math>~\equiv</math>

<math>~\frac{\lambda L}{\pi y_1w} \, ,</math>

     

<math>~L</math>

<math>~\equiv</math>

<math>~ Z \biggl[1 + \frac{y_1^2}{Z^2} \biggr]^{1 / 2} \, , </math>

      and,      

<math>~\Theta</math>

<math>~\equiv</math>

<math>~\biggl(\frac{2\pi y_1 Y}{\lambda L} \biggr) \, .</math>

In other words, making the substitution, <math>~(2\pi/\lambda) \rightarrow k</math>, and recognizing that, <math>~d \leftrightarrow Z</math>, our expression becomes,

<math>~I(y) \equiv \biggl[i k d e^{-i k d} \biggr] A(y_1)</math>

<math>~\approx</math>

<math>~ \biggl[i k d e^{-i k d} \biggr] e^{i kL }\biggl[ \frac{L}{k y_1} \biggr] \int a_0(\Theta) e^{i\phi(\Theta)} \cdot \exp\biggl[-i \frac{2\pi y_1 Y}{\lambda L} \biggr] \biggl[ \frac{k y_1 }{L} \biggr] dY </math>

 

<math>~=</math>

<math>~ (i k Z) e^{i k (L-Z)} \int a_0(\Theta) e^{i\phi(\Theta)} \cdot \exp\biggl[-i 2\pi Y \biggl(\frac{y_1 }{\lambda L}\biggr) \biggr] dY </math>

 

<math>~\approx</math>

<math>~ (i k Z) \exp\biggl[i k \biggl( L-Z \biggr)\biggr] \int a_0(\Theta) e^{i\phi(\Theta)} \cdot \exp\biggl[-i 2\pi Y \biggl(\frac{y_1 }{\lambda L}\biggr) \biggr] dY </math>


See Also

  • Updated Table of Contents
  • Tohline, J. E., (2008) Computing in Science & Engineering, vol. 10, no. 4, pp. 84-85 — Where is My Digital Holographic Display? [ PDF ]


Whitworth's (1981) Isothermal Free-Energy Surface

© 2014 - 2021 by Joel E. Tohline
|   H_Book Home   |   YouTube   |
Appendices: | Equations | Variables | References | Ramblings | Images | myphys.lsu | ADS |
Recommended citation:   Tohline, Joel E. (2021), The Structure, Stability, & Dynamics of Self-Gravitating Fluids, a (MediaWiki-based) Vistrails.org publication, https://www.vistrails.org/index.php/User:Tohline/citation