Difference between revisions of "User:Tohline/Appendix/CGH/KAH2001"

From VistrailsWiki
Jump to navigation Jump to search
(Created page with '__FORCETOC__ <!-- will force the creation of a Table of Contents --> <!-- __NOTOC__ will force TOC off --> =Hologram Reconstruction Using a Digital Micromirror Device= In a pape…')
 
Line 4: Line 4:
=Hologram Reconstruction Using a Digital Micromirror Device=
=Hologram Reconstruction Using a Digital Micromirror Device=


In a paper titled, ''Hologram reconstruction using a digital micromirror device'', [https://ui.adsabs.harvard.edu/abs/2001OptEn..40..926K/abstract T. Kreis, P. Aswendt, &amp; R. H&ouml;fling (2001)], Optical Engineering, vol. 40, no. 6, 926 - 933) present some background theoretical development that was used to underpin work of the group at UT's Southwestern Medical University in Dallas that Richard Muffoletto and I visited circa 2004.
In a paper titled, ''Hologram reconstruction using a digital micromirror device'', [https://ui.adsabs.harvard.edu/abs/2001OptEn..40..926K/abstract T. Kreis, P. Aswendt, &amp; R. H&ouml;fling (2001)] &#8212; Optical Engineering, vol. 40, no. 6, 926 - 933), hereafter, KAH2001 &#8212; present some background theoretical development that was used to underpin work of the group at UT's Southwestern Medical University in Dallas that Richard Muffoletto and I visited circa 2004.




{{LSU_HBook_header}}
{{LSU_HBook_header}}


==Optical Field in the Image Plane==


==One-dimensional Apertures==
Labeling it as their equation (5), [https://ui.adsabs.harvard.edu/abs/2001OptEn..40..926K/abstract KAH2001] present the following ''Fresnel transform'' expression for the "optical field, <math>~B(x, y)</math>, in the image plane at a distance <math>~d</math> from the" aperture:
<table border="0" cellpadding="5" align="center">


From our accompanying discussion of the [[User:Tohline/Appendix/CGH/ParallelApertures#Utility_of_FFT_Techniques|''Utility of FFT Techniques'']], we start with the most general expression for the amplitude at one point on an image screen, namely,
<tr>
  <td align="right">
<math>~B(x,y)</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
\frac{e^{i k d}}{i k d} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} U(\xi,\eta) \times \exp\biggl\{ \frac{i \pi}{d \lambda} \biggl[ (x - \xi)^2 + (y-\eta)^2 \biggr] \biggr\} d\xi d\eta
</math>
  </td>
</tr>
 
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
\biggl[\frac{e^{i k d}}{i k d} \biggr] I_\xi(x) \cdot I_\eta(y) \, ,
</math>
  </td>
</tr>
</table>
with,
<table border="0" cellpadding="5" align="center">
 
<tr>
  <td align="right">
<math>~I_\xi(x)</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
\int_{-\infty}^{\infty} U(\xi) \times \exp\biggl[ \frac{i \pi}{d \lambda} (x - \xi)^2 \biggr] d\xi \, ,
</math>
  </td>
</tr>
 
<tr>
  <td align="right">
<math>~I_\eta(y)</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
\int_{-\infty}^{\infty} U(\eta) \times \exp\biggl[ \frac{i \pi}{d \lambda} (y - \eta)^2 \biggr] d\eta \, .
</math>
  </td>
</tr>
</table>


=See Also=
=See Also=

Revision as of 04:02, 25 March 2020

Hologram Reconstruction Using a Digital Micromirror Device

In a paper titled, Hologram reconstruction using a digital micromirror device, T. Kreis, P. Aswendt, & R. Höfling (2001) — Optical Engineering, vol. 40, no. 6, 926 - 933), hereafter, KAH2001 — present some background theoretical development that was used to underpin work of the group at UT's Southwestern Medical University in Dallas that Richard Muffoletto and I visited circa 2004.


Whitworth's (1981) Isothermal Free-Energy Surface
|   Tiled Menu   |   Tables of Content   |  Banner Video   |  Tohline Home Page   |

Optical Field in the Image Plane

Labeling it as their equation (5), KAH2001 present the following Fresnel transform expression for the "optical field, <math>~B(x, y)</math>, in the image plane at a distance <math>~d</math> from the" aperture:

<math>~B(x,y)</math>

<math>~=</math>

<math>~ \frac{e^{i k d}}{i k d} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} U(\xi,\eta) \times \exp\biggl\{ \frac{i \pi}{d \lambda} \biggl[ (x - \xi)^2 + (y-\eta)^2 \biggr] \biggr\} d\xi d\eta </math>

 

<math>~=</math>

<math>~ \biggl[\frac{e^{i k d}}{i k d} \biggr] I_\xi(x) \cdot I_\eta(y) \, , </math>

with,

<math>~I_\xi(x)</math>

<math>~=</math>

<math>~ \int_{-\infty}^{\infty} U(\xi) \times \exp\biggl[ \frac{i \pi}{d \lambda} (x - \xi)^2 \biggr] d\xi \, , </math>

<math>~I_\eta(y)</math>

<math>~=</math>

<math>~ \int_{-\infty}^{\infty} U(\eta) \times \exp\biggl[ \frac{i \pi}{d \lambda} (y - \eta)^2 \biggr] d\eta \, . </math>

See Also

  • Updated Table of Contents
  • Tohline, J. E., (2008) Computing in Science & Engineering, vol. 10, no. 4, pp. 84-85 — Where is My Digital Holographic Display? [ PDF ]


Whitworth's (1981) Isothermal Free-Energy Surface

© 2014 - 2021 by Joel E. Tohline
|   H_Book Home   |   YouTube   |
Appendices: | Equations | Variables | References | Ramblings | Images | myphys.lsu | ADS |
Recommended citation:   Tohline, Joel E. (2021), The Structure, Stability, & Dynamics of Self-Gravitating Fluids, a (MediaWiki-based) Vistrails.org publication, https://www.vistrails.org/index.php/User:Tohline/citation