Difference between revisions of "User:Tohline/Appendix/References"

From VistrailsWiki
Jump to navigation Jump to search
Line 36: Line 36:
==Appendix of EFE==
==Appendix of EFE==


The presentation of the subject in this book is based on the following papers:
The presentation of the subject in this book (Ellipsoidal Figures of Equilibrium) is based on the following papers:
===Setup===
===Setup===
* [Publication I] [https://www.sciencedirect.com/science/article/pii/0022247X60900251 S. Chandrasekhar (1960)], J. Mathematical Analysis and Applications, 1, 240:  ''The virial theorem in hydromagnetics''
* [Publication I] [https://www.sciencedirect.com/science/article/pii/0022247X60900251 S. Chandrasekhar (1960)], J. Mathematical Analysis and Applications, 1, 240:  ''The virial theorem in hydromagnetics''
Line 47: Line 47:
* [Publication IX] [https://ui.adsabs.harvard.edu/abs/1962ApJ...136.1048C/abstract S. Chandrasekhar (1962)], ApJ, 136, 1048:  ''On the point of bifurcation along the sequence of the Jacobi ellipsoids''
* [Publication IX] [https://ui.adsabs.harvard.edu/abs/1962ApJ...136.1048C/abstract S. Chandrasekhar (1962)], ApJ, 136, 1048:  ''On the point of bifurcation along the sequence of the Jacobi ellipsoids''


===Maclaurin, Jacobi, and Jeans Sequences===
===Spheroidal & Ellipsoidal Sequences===
* [Publication V] [https://ui.adsabs.harvard.edu/abs/1962ApJ...135..248C/abstract S. Chandrasekhar & N. R. Lebovitz (1962)], ApJ, 135, 248:  ''On the oscillations and the stability of rotating gaseous masses''
* [Publication V] [https://ui.adsabs.harvard.edu/abs/1962ApJ...135..248C/abstract S. Chandrasekhar & N. R. Lebovitz (1962)], ApJ, 135, 248:  ''On the oscillations and the stability of rotating gaseous masses''
* [Publication X] [https://ui.adsabs.harvard.edu/abs/1962ApJ...136.1069C/abstract S. Chandrasekhar & N. R. Lebovitz (1962)], ApJ, 136, 1069:  ''On the oscillations and the stability of rotating gaseous masses.  II. The homogeneous, compressible model''
* [Publication X] [https://ui.adsabs.harvard.edu/abs/1962ApJ...136.1069C/abstract S. Chandrasekhar & N. R. Lebovitz (1962)], ApJ, 136, 1069:  ''On the oscillations and the stability of rotating gaseous masses.  II. The homogeneous, compressible model''
Line 55: Line 55:
* [Publication XV] [https://ui.adsabs.harvard.edu/abs/1963ApJ...137.1172C/abstract S. Chandrasekhar & N. R. Lebovitz (1963)], ApJ, 137, 1172:  ''The equilibrium and the stability of the Jeans spheroids''
* [Publication XV] [https://ui.adsabs.harvard.edu/abs/1963ApJ...137.1172C/abstract S. Chandrasekhar & N. R. Lebovitz (1963)], ApJ, 137, 1172:  ''The equilibrium and the stability of the Jeans spheroids''
* [Publication XVI] [https://ui.adsabs.harvard.edu/abs/1963ApJ...137.1185C/abstract S. Chandrasekhar (1963)], ApJ, 137, 1185:  ''The points of bifurcation along the Maclaurin, the Jacobi, and the Jeans sequences''
* [Publication XVI] [https://ui.adsabs.harvard.edu/abs/1963ApJ...137.1185C/abstract S. Chandrasekhar (1963)], ApJ, 137, 1185:  ''The points of bifurcation along the Maclaurin, the Jacobi, and the Jeans sequences''
* [Publication XXIII] [https://ui.adsabs.harvard.edu/abs/1964ApNr....9..323C/abstract Chandrasekhar & N. R. Lebovitz (1964)], Astrophysica Norvegica, 9, 232:  ''On the ellipsoidal figures of equilibrium of homogeneous masses''
* [Publication XXIV] [https://ui.adsabs.harvard.edu/abs/1964ApJ...140..599C/abstract S. Chandrasekhar (1964)], ApJ, 141, 1043:  ''The equilibrium and the stability of the Dedekind ellipsoids''''


===Binary Systems===
===Binary Systems===

Revision as of 21:52, 23 June 2019

Whitworth's (1981) Isothermal Free-Energy Surface
|   Tiled Menu   |   Tables of Content   |  Banner Video   |  Tohline Home Page   |

Key Parallel References

The following seven references serve as excellent supplemental printed texts to this Wiki-based H_Book because the fundamental physics and astrophysics concepts that are covered in these texts have significant overlap with the concepts we are discussing. The degree to which these references provide discussions that are parallel to ours is illustrated in our accompanying key equations appendix.

  • [BT87] Binney, J. & Tremaine, S. 1987, Galactic Dynamics (Princeton, NJ: Princeton University Press)
  • [BLRY07] Bodenheimer, P., Laughlin, G. P., Różyczka, M. & Yorke, H. W. 2007, Numerical Methods in Astrophysics An Introduction (New York: Taylor & Francis)
  • [C67] Chandrasekhar, S. 1967 (originally, 1939), An Introduction to the Study of Stellar Structure (New York: Dover)
  • [H87] Huang, K. 1987 (originally 1963), Statistical Mechanics (New York: John Wiley & Sons)
  • [KW94] Kippenhahn, R. & Weigert, A. 1994, Stellar Structure and Evolution (New York: Springer-Verlag)
  • [LL75] Laundau, L. D. & Lifshitz, E. M. 1975 (originally, 1959), Fluid Mechanics (New York: Pergamon Press)
  • [P00] Padmanabhan, T. 2000, Theoretical Astrophysics. Volume I: Astrophysical Processes (Cambridge: Cambridge University Press); and Padmanabhan, T. 2001, Theoretical Astrophysics. Volume II: Stars and Stellar Systems (Cambridge: Cambridge University Press)
  • [ST83] Shapiro, S. L. & Teukolsky, S. A. 1983, Black Holes, White Dwarfs, and Neutron Stars: The Physics of Compact Objects (New York: John Wiley & Sons); republished in 2004 by WILEY-VCH Verlag GmbH & Co. KGaA

Other References

  • [CRC] Selby, Samuel M. 1971, CRC Standard Mathematical Tables (Cleveland, Ohio: The Chemical Rubber Co.)
  • [EFE] Chandrasekhar, S. 1987 (originally, 1969), Ellipsoidal Figures of Equilibrium (New York: Dover)
  • [HK94] Hansen, C. J. & Kawaler, S. D. 1994, Stellar Interiors: Physical Principles, Structure, and Evolution (New York: Springer-Verlag)
  • [MF53] Morse, Philip M. & Feshbach, H. 1953, Methods of Theoretical Physics: Parts I and II (New York: McGraw-Hill Book Company)
  • [Shu92] Shu, Frank H. 1992, The Physics of Astrophysics, Volume II: Gas Dynamics (Mill Valey, California: University Science Books)
  • [T78] Tassoul, Jean-Louis 1978, Theory of Rotating Stars (Princeton, NJ: Princeton Univ. Press)

Appendix of EFE

The presentation of the subject in this book (Ellipsoidal Figures of Equilibrium) is based on the following papers:

Setup

  • [Publication I] S. Chandrasekhar (1960), J. Mathematical Analysis and Applications, 1, 240: The virial theorem in hydromagnetics
  • [Publication II] N. R. Lebovitz (1961), ApJ, 134, 500: The virial tensor and its application to self-gravitating fluids
  • [Publication III] S. Chandrasekhar (1961), ApJ, 134, 662: A Theorem on rotating polytropes


Spheroidal & Ellipsoidal Sequences

Binary Systems

  • [Publication XIX] S. Chandrasekhar (1963), ApJ, 138, 1182: The equilibrium and stability of the Roche ellipsoids
  • [Publication XX] N. R. Lebovitz (1963), ApJ, 138, 1214: On the principle of the exchange of stabilities. I. The Roche ellipsoids
  • [Publication XXI] S. Chandrasekhar (1964), ApJ, 140, 599: The equilibrium and the stability of the Darwin ellipsoids

Other

  • [Publication VI] S. Chandrasekhar (1962), Proc. 4th U. S. Nat. Congress of Applied Mechanics, pp. 9 - 14: An approach to the theory of the equilibrium and the stability of rotating masses via the virial theorem and its extensions
  • [Publication XII] S. Chandrasekhar & N. R. Lebovitz (1962), ApJ, 136, 1105: On the occurrence of multiple frequencies and beats in the β Canis Majoris stars
  • [Publication XVII] S. Chandrasekhar & N. R. Lebovitz (1963), ApJ, 138, 185: Non-radial oscillations and the convective instability of gaseous masses
  • [Publication XVIII] S. Chandrasekhar & P. H. Roberts (1963), ApJ, 138, 801: The ellipticity of a slowly rotating configuration
  • [Publication XXII] S. Chandrasekhar (1964), Lectures in Theoretical Physics, Vol. VI, Boulder 1963 (Boulder: University of Colorado Press), pp. 1 - 72: The higher order virial equations and their applications to the equilibrium and stability of rotating configurations

 

Whitworth's (1981) Isothermal Free-Energy Surface

© 2014 - 2021 by Joel E. Tohline
|   H_Book Home   |   YouTube   |
Appendices: | Equations | Variables | References | Ramblings | Images | myphys.lsu | ADS |
Recommended citation:   Tohline, Joel E. (2021), The Structure, Stability, & Dynamics of Self-Gravitating Fluids, a (MediaWiki-based) Vistrails.org publication, https://www.vistrails.org/index.php/User:Tohline/citation