Difference between revisions of "User:Tohline/Apps/RotatingPolytropes"

From VistrailsWiki
Jump to navigation Jump to search
Line 18: Line 18:


* [https://ui.adsabs.harvard.edu/abs/1962ApJ...136.1082C/abstract S. Chandrasekhar & N. R. Lebovitz (1962)], ApJ, 136, 1082
* [https://ui.adsabs.harvard.edu/abs/1962ApJ...136.1082C/abstract S. Chandrasekhar & N. R. Lebovitz (1962)], ApJ, 136, 1082
<table border="0" align="center" width="100%" cellpadding="1"><tr>
<td align="center" width="5%">&nbsp;</td><td align="left">
<font color="green">If one ''assumes'' that the mass is distributed uniformly, the equilibrium configurations are the well-known Maclaurin spheroids.  This paper will be devoted to finding the oscillation frequencies of the Maclaurin spheroids.</font>
</td></tr></table>
* [https://ui.adsabs.harvard.edu/abs/1973ApJ...180..171O/abstract J. P. Ostriker &amp; P. Bodenheimer (1973)], ApJ, 155, 987 [Part III]
* [https://ui.adsabs.harvard.edu/abs/1973ApJ...180..171O/abstract J. P. Ostriker &amp; P. Bodenheimer (1973)], ApJ, 155, 987 [Part III]
* [https://ui.adsabs.harvard.edu/abs/1973ApJ...180..159B/abstract P. Bodenheimer &amp; J. P. Ostriker (1973)], ApJ, 180, 159 [Part VIII]
* [https://ui.adsabs.harvard.edu/abs/1973ApJ...180..159B/abstract P. Bodenheimer &amp; J. P. Ostriker (1973)], ApJ, 180, 159 [Part VIII]

Revision as of 04:19, 16 June 2019

Rotationally Flattened Polytropes

Whitworth's (1981) Isothermal Free-Energy Surface
|   Tiled Menu   |   Tables of Content   |  Banner Video   |  Tohline Home Page   |

Example Equilibrium Configurations

Reviews

Uniform Rotation

Differential Rotation

 

If one assumes that the mass is distributed uniformly, the equilibrium configurations are the well-known Maclaurin spheroids. This paper will be devoted to finding the oscillation frequencies of the Maclaurin spheroids.

See Also


Whitworth's (1981) Isothermal Free-Energy Surface

© 2014 - 2021 by Joel E. Tohline
|   H_Book Home   |   YouTube   |
Appendices: | Equations | Variables | References | Ramblings | Images | myphys.lsu | ADS |
Recommended citation:   Tohline, Joel E. (2021), The Structure, Stability, & Dynamics of Self-Gravitating Fluids, a (MediaWiki-based) Vistrails.org publication, https://www.vistrails.org/index.php/User:Tohline/citation