Difference between revisions of "User:Tohline/SSC/Structure/Polytropes/VirialSummary"

From VistrailsWiki
Jump to navigation Jump to search
Line 244: Line 244:
   <td align="left">
   <td align="left">
<math>~
<math>~
\biggl[ \biggl( \frac{G}{K} \biggr)^n M_\mathrm{tot}^{n-1} \biggr]^{1/(n-3)} \, ,
\biggl[ \biggl( \frac{G}{K} \biggr)^n M^{n-1} \biggr]^{1/(n-3)} \, ,
</math>
</math>
   </td>
   </td>
Line 256: Line 256:
   <td align="left">
   <td align="left">
<math>~
<math>~
\biggl[ \frac{K^{4n}}{G^{3(n+1)} M_\mathrm{tot}^{2(n+1)}} \biggr]^{1/(n-3)}
\biggl[ \frac{K^{4n}}{G^{3(n+1)} M^{2(n+1)}} \biggr]^{1/(n-3)}
</math>
</math>
   </td>
   </td>
Line 273: Line 273:
</tr>
</tr>
</table>
</table>
&#8212; which, as is detailed in an [[User:Tohline/SphericallySymmetricConfigurations/Virial#Choices_Made_by_Other_Researchers|accompanying discussion]], are similar but not identical to the normalizations used by [http://adsabs.harvard.edu/abs/1970MNRAS.151...81H Horedt (1970)] and by [http://adsabs.harvard.edu/abs/1981MNRAS.195..967W Whitworth (1981)] &#8212; the constants in the above-presented [[#Basic_Relations|Basic Relations]] become,
&#8212; which, as is detailed in an [[User:Tohline/SphericallySymmetricConfigurations/Virial#Choices_Made_by_Other_Researchers|accompanying discussion]], are similar but not identical to the normalizations adopted by [http://adsabs.harvard.edu/abs/1970MNRAS.151...81H Horedt (1970)] and by [http://adsabs.harvard.edu/abs/1981MNRAS.195..967W Whitworth (1981)] &#8212; the constants in the above-presented [[#Basic_Relations|Basic Relations]] become,
<table border="0" cellpadding="5" align="center">
<table border="0" cellpadding="5" align="center">


Line 315: Line 315:
</table>
</table>


where, <math>~\tilde{f}_M,</math> <math>~\tilde{f}_M,</math> and <math>~\tilde{f}_M,</math> are ''structural form factors.''  The relevant dimensionless free-energy surface is, then, given by the expression,
where, <math>~\tilde{\mathfrak{f}}_M,</math> <math>~\tilde{\mathfrak{f}}_M,</math> and <math>~\tilde{\mathfrak{f}}_M,</math> are ''structural form factors.''  The relevant dimensionless free-energy surface is, then, given by the expression,
<table border="1" cellpadding="5" align="center">
<table border="1" cellpadding="5" align="center">
<tr><td align="center">
<tr><td align="center">
Line 339: Line 339:
</td></tr>
</td></tr>
</table>
</table>


===Fix External Pressure While Varying Mass===
===Fix External Pressure While Varying Mass===

Revision as of 20:41, 8 February 2019

Virial Equilibrium of Pressure-Truncated Polytropes

Here we will draw heavily from an accompanying Free Energy Synopsis.


Whitworth's (1981) Isothermal Free-Energy Surface
|   Tiled Menu   |   Tables of Content   |  Banner Video   |  Tohline Home Page   |

Groundwork

Basic Relations

In the context of spherically symmetric, pressure-truncated polytropic configurations, the relevant free-energy expression is,

<math>~\mathfrak{G}</math>

<math>~=</math>

<math>~W_\mathrm{grav} + U_\mathrm{int} + P_e V \, .</math>

When rewritten in a suitably dimensionless form — see two useful alternatives, below — this expression becomes,

<math>~\mathfrak{G}^*</math>

<math>~=</math>

<math>~- a x^{-1} + bx^{-3/n} + c x^3 \, ,</math>

where <math>~x</math> is the configuration's dimensionless radius and <math>~a</math>, <math>~b</math>, and <math>~c</math> are constants. We therefore have,

<math>~\frac{d\mathfrak{G}^*}{dx}</math>

<math>~=</math>

<math>~\frac{1}{x^2} \biggl[ a - \biggl( \frac{3b}{n} \biggr) x^{(n-3)/n} + 3c x^4 \biggr] \, ,</math>

and,

<math>~\frac{d^2\mathfrak{G}^*}{dx^2}</math>

<math>~=</math>

<math>~\frac{1}{x^3} \biggl[\biggl(\frac{n+3}{n}\biggr) \biggl( \frac{3b}{n} \biggr) x^{(n-3)/n} + 6c x^4 - 2a \biggr] \, .</math>

Virial equilibrium is obtained when <math>~d\mathfrak{G}^*/dx = 0</math>, that is, when

<math>~\biggl( \frac{3b}{n} \biggr) x_\mathrm{eq}^{(n-3)/n} </math>

<math>~=</math>

<math>~ a + 3c x_\mathrm{eq}^4 \, .</math>

And along an equilibrium sequence, the specific equilibrium state that marks a transition from dynamically stable to dynamically unstable configurations — henceforth labeled as having the critical radius, <math>~x_\mathrm{crit}</math> — is identified by setting <math>~d^2\mathfrak{G}^*/dx^2 = 0</math>, that is, it is the configuration for which,

<math>~0</math>

<math>~=</math>

<math>~\biggl[\biggl(\frac{n+3}{n}\biggr) \biggl( \frac{3b}{n} \biggr) x^{(n-3)/n} + 6c x^4 - 2a \biggr]_{x = x_\mathrm{eq}}</math>

<math>~\Rightarrow ~~~ x_\mathrm{crit}^4 </math>

<math>~=</math>

<math>~ \frac{a}{3^2c}\biggl(\frac{n - 3}{n+1}\biggr) \, . </math>

Inserting the adiabatic exponent in place of the polytropic index via the relation, <math>~n = (\gamma - 1)^{-1}</math>, we have equivalently,

<math>~ x_\mathrm{crit}^4 </math>

<math>~=</math>

<math>~ \frac{a}{3^2c}\biggl(\frac{4-3\gamma}{\gamma}\biggr) \, . </math>

Useful Recognition

By comparing various terms in the first two algebraic Setup expressions, above, It is clear that,

<math>~W^*_\mathrm{grav} = -ax^{-1}</math>

      and,      

<math>~U^*_\mathrm{int} = bx^{-3/n} \, .</math>

Notice, then, that in every equilibrium configuration, we should find,

<math>~- \frac{U^*_\mathrm{int}}{W^*_\mathrm{grav}}\biggr|_\mathrm{eq}</math>

<math>~=</math>

<math>~ \biggl(\frac{b}{a}\biggr) x_\mathrm{eq}^{(n-3)/n} = \frac{n}{3a} \biggl[ a + 3cx^4_\mathrm{eq} \biggr] </math>

 

<math>~=</math>

<math>~ \frac{n}{3} \biggl[ 1 + \biggl(\frac{3c}{a}\biggr) x^4_\mathrm{eq} \biggr] \, . </math>

And, specifically in the critical configuration we should find that,

<math>~- \frac{U^*_\mathrm{int}}{W^*_\mathrm{grav}}\biggr|_\mathrm{crit}</math>

<math>~=</math>

<math>~ \frac{1}{3(\gamma-1)} \biggl[ 1 + \frac{1}{3}\biggl(\frac{4-3\gamma}{\gamma}\biggr) \biggr] = \frac{4}{3^2\gamma(\gamma-1)} </math>

<math>~\Rightarrow ~~~\frac{S^*_\mathrm{therm}}{W^*_\mathrm{grav}}\biggr|_\mathrm{crit}</math>

<math>~=</math>

<math>~ -\frac{2}{3\gamma} \, . </math>

The equivalent of this last expression also appears at the end of subsection of an accompanying Tabular Overview.

Equilibrium Sequences

In all of the polytropic configurations being considered here, <math>~K_\mathrm{n}</math> is a constant — that is, the specific entropy of all fluid elements is assumed to be the same, both spatially and temporally.

Fix Mass While Varying External Pressure

In this case, we want to examine undulations of a two-dimensional free-energy surface that results from allowing <math>~R</math> and <math>~P_e</math> to vary while holding <math>~M</math> fixed. In our accompanying, more detailed discussion, this is referred to as Case M. Adopting the normalizations,

<math>~R_\mathrm{norm}</math>

<math>~\equiv</math>

<math>~ \biggl[ \biggl( \frac{G}{K} \biggr)^n M^{n-1} \biggr]^{1/(n-3)} \, , </math>

     

<math>~P_\mathrm{norm}</math>

<math>~\equiv</math>

<math>~ \biggl[ \frac{K^{4n}}{G^{3(n+1)} M^{2(n+1)}} \biggr]^{1/(n-3)} </math>

      and,      

<math>~E_\mathrm{norm}</math>

<math>~\equiv</math>

<math>~ P_\mathrm{norm} R^3_\mathrm{norm} </math>

— which, as is detailed in an accompanying discussion, are similar but not identical to the normalizations adopted by Horedt (1970) and by Whitworth (1981) — the constants in the above-presented Basic Relations become,

<math>~a</math>

<math>~\equiv</math>

<math>~3\mathcal{A} = \frac{3}{5} \cdot \frac{\tilde{\mathfrak{f}}_W}{\tilde{\mathfrak{f}}_M^2}\, , </math>

<math>~b</math>

<math>~\equiv</math>

<math>~n\mathcal{B} = n\biggl(\frac{4\pi}{3} \biggr)^{-1/n} \frac{\tilde{\mathfrak{f}}_A}{\tilde{\mathfrak{f}}_M^{(n+1)/n}} \, , </math>

<math>~c</math>

<math>~\equiv</math>

<math>~\frac{4\pi}{3}\biggl( \frac{P_e}{P_\mathrm{norm}} \biggr) \, , </math>

where, <math>~\tilde{\mathfrak{f}}_M,</math> <math>~\tilde{\mathfrak{f}}_M,</math> and <math>~\tilde{\mathfrak{f}}_M,</math> are structural form factors. The relevant dimensionless free-energy surface is, then, given by the expression,

<math>~\mathfrak{G}_{K,M}^* \equiv \frac{\mathfrak{G}_{K,M}}{E_\mathrm{norm}} </math>

<math>~=</math>

<math>~ -3\mathcal{A} \biggl(\frac{R}{R_\mathrm{norm}}\biggr)^{-1} +~ n\mathcal{B} \biggl(\frac{R}{R_\mathrm{norm}}\biggr)^{-3/n} +~ \biggl( \frac{4\pi}{3} \biggr) \frac{P_e}{P_\mathrm{norm}} \biggl(\frac{R}{R_\mathrm{norm}}\biggr)^3 \, . </math>

Fix External Pressure While Varying Mass

In this case, we want to examine undulations of a two-dimensional free-energy surface that results from allowing <math>~R</math> and <math>~M</math> to vary while holding <math>~P_e</math> fixed. In our accompanying, more detailed discussion, this is referred to as Case P.

See Also


Whitworth's (1981) Isothermal Free-Energy Surface

© 2014 - 2021 by Joel E. Tohline
|   H_Book Home   |   YouTube   |
Appendices: | Equations | Variables | References | Ramblings | Images | myphys.lsu | ADS |
Recommended citation:   Tohline, Joel E. (2021), The Structure, Stability, & Dynamics of Self-Gravitating Fluids, a (MediaWiki-based) Vistrails.org publication, https://www.vistrails.org/index.php/User:Tohline/citation