Difference between revisions of "User:Tohline/SSC/Synopsis StyleSheet"
Line 232: | Line 232: | ||
==Stability== | ==Stability== | ||
=== | ===Isolated & Pressure-Truncated Configurations=== | ||
{| class="wikitable" style="margin: auto; color:black; width:85%;" border="1" cellpadding="12" | {| class="wikitable" style="margin: auto; color:black; width:85%;" border="1" cellpadding="12" | ||
|- | |- | ||
! style="background-color:lightgreen;" colspan="2"|<font size="+1"><b>Stability Analysis</b></font> | ! style="background-color:lightgreen;" colspan="2"|<font size="+1"><b>Stability Analysis: Applicable to Isolated & Pressure-Truncated Configurations</b></font> | ||
|- | |||
! style="text-align:center; background-color:#ffff99;" width="50%" |<b><font color="maroon" size="+1">④</font></b> <b>Perturbation Theory</b> | |||
! style="text-align:center; background-color:lightblue;" |<b><font color="maroon" size="+1">⑦</font></b> <b>Free-Energy Analysis of Stability</b> | |||
|- | |||
! style="vertical-align:top; text-align:left;" | | |||
Given the radial profile of the density and pressure in the equilibrium configuration, solve the [[User:Tohline/SSC/VariationalPrinciple#Ledoux_and_Pekeris_.281941.29|eigenvalue problem defined]] by the, | |||
<div align="center"> | |||
<font color="#770000">'''LAWE: Linear Adiabatic Wave''' (or ''Radial Pulsation'') '''Equation'''</font><br /> | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~0</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
\frac{d}{dr}\biggl[ r^4 \gamma P ~\frac{dx}{dr} \biggr] | |||
+\biggl[ \omega^2 \rho r^4 + (3\gamma - 4) r^3 \frac{dP}{dr} \biggr] x | |||
</math> | |||
</td> | |||
</tr> | |||
<tr><td align="center" colspan="3"> | |||
[<b>[[User:Tohline/Appendix/References#P00|<font color="red">P00</font>]]</b>], Vol. II, §3.7.1, p. 174, Eq. (3.145) | |||
</td></tr> | |||
</table> | |||
</div> | |||
to find one or more radially dependent, radial-displacement eigenvectors, <math>~x \equiv \delta r/r</math>, along with (the square of) the corresponding oscillation eigenfrequency, <math>~\omega^2</math>. | |||
! style="vertical-align:top; text-align:left;" rowspan="5"| | |||
The second derivative of the free-energy function is, | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~R_0^2 ~\frac{\partial^2 \mathfrak{G}}{\partial R^2}</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
-2a\biggl(\frac{R}{R_0}\biggr)^{-3} + (3-3\gamma)(2-3\gamma)b \biggl(\frac{R}{R_0}\biggr)^{1-3\gamma} + 6c\biggl(\frac{R}{R_0}\biggr) | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~\biggl(\frac{R_0}{R} \biggr)^2\biggl[ | |||
2W_\mathrm{grav} - 3(\gamma-1)(2-3\gamma)U_\mathrm{int} + 6P_e V | |||
\biggr] \, . | |||
</math> | |||
</td> | |||
</tr> | |||
</table> | |||
Evaluating this second derivative for an equilibrium configuration — that is by calling upon the (virial) equilibrium condition to set the value of the internal energy — we have, | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~3(\gamma-1)U_\mathrm{int}</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~3P_e V - W_\mathrm{grav} </math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
<math>~\Rightarrow~~~ R^2 \biggl[\frac{\partial^2\mathfrak{G}}{\partial R^2}\biggr]_\mathrm{equil}</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~2W_\mathrm{grav} - (2-3\gamma)\biggl[3P_e V - W_\mathrm{grav} \biggr] + 6P_e V | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~(4-3\gamma)W_\mathrm{grav} + 3^2\gamma P_e V \, . | |||
</math> | |||
</td> | |||
</tr> | |||
</table> | |||
Note the similarity with <b><font color="maroon" size="+1">⑥</font></b>. | |||
---- | |||
Alternatively, recalling that, | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~3(\gamma - 1)U_\mathrm{int}</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~2S_\mathrm{therm} \, , | |||
</math> | |||
</td> | |||
</tr> | |||
</table> | |||
the conditions for virial equilibrium and stability, may be written respectively as, | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~3P_e V</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ 2S_\mathrm{therm}+ W_\mathrm{grav} </math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
<math>~\Rightarrow~~~ R^2 \biggl[\frac{\partial^2\mathfrak{G}}{\partial R^2}\biggr]_\mathrm{equil}</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
2W_\mathrm{grav} - 2(2-3\gamma)S_\mathrm{therm} + 2 \biggl[ 2S_\mathrm{therm}+ W_\mathrm{grav} \biggr] | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
4W_\mathrm{grav} + 6\gamma S_\mathrm{therm} \, . | |||
</math> | |||
</td> | |||
</tr> | |||
</table> | |||
|- | |||
! style="text-align:center; background-color:#ffff99;" width="50%" |<b><font color="maroon" size="+1">⑤</font></b> <b>Variational Principle</b> | |||
|- | |||
! style="vertical-align:top; text-align:left;" | | |||
Multiply the LAWE through by <math>~4\pi x dr</math>, and integrate over the volume of the configuration gives the, | |||
<div align="center"> | |||
<font color="#770000">'''Governing Variational Relation</font><br /> | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~0</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
\int_0^R 4\pi r^4 \gamma P \biggl(\frac{dx}{dr}\biggr)^2 dr | |||
- \int_0^R 4\pi (3\gamma - 4) r^3 x^2 \biggl( \frac{dP}{dr} \biggr) dr | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
| |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
- 4\pi \biggr[r^4 \gamma Px \biggl(\frac{dx}{dr}\biggr) \biggr]_0^R | |||
- \int_0^R 4\pi \omega^2 \rho r^4 x^2 dr \, . | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
\int_0^R x^2 \biggl(\frac{d\ln x}{d\ln r}\biggr)^2 \gamma 4\pi r^2P dr | |||
- \int_0^R (3\gamma - 4)x^2 \biggl( - \frac{GM_r}{r} \biggr) 4\pi \rho r^2 dr | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
| |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
+ \biggr[\gamma 4\pi r^3 Px^2 \biggl(-\frac{d\ln x}{d\ln r}\biggr) \biggr]_0^R | |||
- \int_0^R 4\pi \omega^2 \rho r^4 x^2 dr \, . | |||
</math> | |||
</td> | |||
</tr> | |||
</table> | |||
</div> | |||
Now, by setting <math>~(d\ln x/d\ln r)_{r=R} = -3</math>, we can ensure that the pressure fluctuation is zero and, hence, <math>~P = P_e</math> at the surface, in which case this relation becomes, | |||
<div align="center"> | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~\omega^2</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
\frac{\gamma (\gamma -1) \int_0^R x^2 \bigl(\frac{d\ln x}{d\ln r}\bigr)^2 dU_\mathrm{int} | |||
- \int_0^R (3\gamma - 4)x^2 dW_\mathrm{grav} | |||
+ 3^2 \gamma x^2 P_eV}{ \int_0^R x^2 r^2 dM_r} | |||
</math> | |||
</td> | |||
</tr> | |||
</table> | |||
</div> | |||
|- | |||
! style="text-align:center; background-color:#ffff99;" width="50%" |<b><font color="maroon" size="+1">⑥</font></b> <b>Approximation: Homologous Expansion/Contraction</b> | |||
|- | |||
! style="vertical-align:top; text-align:left;" | | |||
If we ''guess'' that radial oscillations about the equilibrium state involve purely homologous expansion/contraction, then the radial-displacement eigenfunction is, <math>~x</math> = constant, and the governing variational relation gives, | |||
<div align="center"> | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~\omega^2 \int_0^R r^2 dM_r</math> | |||
</td> | |||
<td align="center"> | |||
<math>~\leq</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
(4- 3\gamma) W_\mathrm{grav}+ 3^2 \gamma P_eV \, . | |||
</math> | |||
</td> | |||
</tr> | |||
</table> | |||
</div> | |||
|} | |||
===Bipolytropes=== | |||
{| class="wikitable" style="margin: auto; color:black; width:85%;" border="1" cellpadding="12" | |||
|- | |||
! style="background-color:lightgreen;" colspan="2"|<font size="+1"><b>Stability Analysis: Applicable to Bipolytropic Configurations</b></font> | |||
|- | |- | ||
! style="text-align:center; background-color:#ffff99;" width="50%" |<b><font color="maroon" size="+1">④</font></b> <b>Perturbation Theory</b> | ! style="text-align:center; background-color:#ffff99;" width="50%" |<b><font color="maroon" size="+1">④</font></b> <b>Perturbation Theory</b> |
Revision as of 03:42, 4 February 2019
Spherically Symmetric Configurations Synopsis (Using Style Sheet)
| Tiled Menu | Tables of Content | Banner Video | Tohline Home Page | |
Structure
Tabular Overview
| ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Equilibrium Structure | ||||||||||||||||
① Detailed Force Balance | ③ Free-Energy Identification of Equilibria | |||||||||||||||
Given a barotropic equation of state, <math>~P(\rho)</math>, solve the equation of
for the radial density distribution, <math>~\rho(r)</math>. |
The Free-Energy is,
Therefore, also,
Equilibrium configurations exist at extrema of the free-energy function, that is, they are identified by setting <math>~d\mathfrak{G}/dR = 0</math>. Hence, equilibria are defined by the condition,
| |||||||||||||||
② Virial Equilibrium | ||||||||||||||||
Multiply the hydrostatic-balance equation through by <math>~rdV</math> and integrate over the volume:
|
Pointers to Relevant Chapters
⓪ Background Material:
· | Principal Governing Equations (PGEs) in most general form being considered throughout this H_Book |
---|---|
· | PGEs in a form that is relevant to a study of the Structure, Stability, & Dynamics of spherically symmetric systems |
· | Supplemental relations — see, especially, barotropic equations of state |
① Detailed Force Balance:
· | Derivation of the equation of Hydrostatic Balance, and a description of several standard strategies that are used to determine its solution — see, especially, what we refer to as Technique 1 |
---|
② Virial Equilibrium:
· | Formal derivation of the multi-dimensional, 2nd-order tensor virial equations |
---|---|
· | Scalar Virial Theorem, as appropriate for spherically symmetric configurations |
· | Generalization of scalar virial theorem to include the bounding effects of a hot, tenuous external medium |
Stability
Isolated & Pressure-Truncated Configurations
Stability Analysis: Applicable to Isolated & Pressure-Truncated Configurations | ||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
④ Perturbation Theory | ⑦ Free-Energy Analysis of Stability | |||||||||||||||||||||||||||||||||
Given the radial profile of the density and pressure in the equilibrium configuration, solve the eigenvalue problem defined by the, LAWE: Linear Adiabatic Wave (or Radial Pulsation) Equation
to find one or more radially dependent, radial-displacement eigenvectors, <math>~x \equiv \delta r/r</math>, along with (the square of) the corresponding oscillation eigenfrequency, <math>~\omega^2</math>. |
The second derivative of the free-energy function is,
Evaluating this second derivative for an equilibrium configuration — that is by calling upon the (virial) equilibrium condition to set the value of the internal energy — we have,
Note the similarity with ⑥.
the conditions for virial equilibrium and stability, may be written respectively as,
| |||||||||||||||||||||||||||||||||
⑤ Variational Principle | ||||||||||||||||||||||||||||||||||
Multiply the LAWE through by <math>~4\pi x dr</math>, and integrate over the volume of the configuration gives the, Governing Variational Relation
Now, by setting <math>~(d\ln x/d\ln r)_{r=R} = -3</math>, we can ensure that the pressure fluctuation is zero and, hence, <math>~P = P_e</math> at the surface, in which case this relation becomes,
| ||||||||||||||||||||||||||||||||||
⑥ Approximation: Homologous Expansion/Contraction | ||||||||||||||||||||||||||||||||||
If we guess that radial oscillations about the equilibrium state involve purely homologous expansion/contraction, then the radial-displacement eigenfunction is, <math>~x</math> = constant, and the governing variational relation gives,
|
Bipolytropes
Stability Analysis: Applicable to Bipolytropic Configurations | ||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
④ Perturbation Theory | ⑦ Free-Energy Analysis of Stability | |||||||||||||||||||||||||||||||||
Given the radial profile of the density and pressure in the equilibrium configuration, solve the eigenvalue problem defined by the, LAWE: Linear Adiabatic Wave (or Radial Pulsation) Equation
to find one or more radially dependent, radial-displacement eigenvectors, <math>~x \equiv \delta r/r</math>, along with (the square of) the corresponding oscillation eigenfrequency, <math>~\omega^2</math>. |
The second derivative of the free-energy function is,
Evaluating this second derivative for an equilibrium configuration — that is by calling upon the (virial) equilibrium condition to set the value of the internal energy — we have,
Note the similarity with ⑥.
the conditions for virial equilibrium and stability, may be written respectively as,
| |||||||||||||||||||||||||||||||||
⑤ Variational Principle | ||||||||||||||||||||||||||||||||||
Multiply the LAWE through by <math>~4\pi x dr</math>, and integrate over the volume of the configuration gives the, Governing Variational Relation
Now, by setting <math>~(d\ln x/d\ln r)_{r=R} = -3</math>, we can ensure that the pressure fluctuation is zero and, hence, <math>~P = P_e</math> at the surface, in which case this relation becomes,
| ||||||||||||||||||||||||||||||||||
⑥ Approximation: Homologous Expansion/Contraction | ||||||||||||||||||||||||||||||||||
If we guess that radial oscillations about the equilibrium state involve purely homologous expansion/contraction, then the radial-displacement eigenfunction is, <math>~x</math> = constant, and the governing variational relation gives,
|
See Also
© 2014 - 2021 by Joel E. Tohline |