Difference between revisions of "User:Tohline/Appendix/Ramblings/RadiationHydro"
Line 642: | Line 642: | ||
</tr> | </tr> | ||
</table> | </table> | ||
</div> | |||
Hence, the equation governing the time-dependent behavior of <math>~E_\mathrm{rad}</math> becomes an expression detailing the time-dependent behavior of the specific entropy, namely, | |||
<div align="center"> | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~\rho T~\frac{ds_\mathrm{rad}}{dt} </math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
- \nabla \cdot \vec{F} - c\kappa_E E_\mathrm{rad} + 4\pi \kappa_p B_p \, . | |||
</math> | |||
</td> | |||
</tr> | |||
</table> | |||
[<b>[[User:Tohline/Appendix/References#Shu92|<font color="red">Shu92</font>]]</b>], §9, Eq. (9.22) | |||
</div> | </div> | ||
Revision as of 17:12, 27 October 2018
Radiation-Hydrodynamics
| Tiled Menu | Tables of Content | Banner Video | Tohline Home Page | |
Governing Equations
Hayes et al. (2006) — But Ignoring the Effects of Magnetic Fields
First, referencing §2 of J. C. Hayes et al. (2006, ApJS, 165, 188 - 228) — alternatively see §2.1 of D. C. Marcello & J. E. Tohline (2012, ApJS, 199, id. 35, 29 pp) — we see that the set of principal governing equations that is typically used in the astrophysics community to include the effects of radiation on self-gravitating fluid flows includes the,
the,
and — ignoring magnetic fields — a modified version of the,
Lagrangian Representation
of the Euler Equation,
<math>~\frac{d\vec{v}}{dt}</math> |
<math>~=</math> |
<math>~ - \frac{1}{\rho}\nabla P - \nabla \Phi + \frac{1}{\rho}\biggl(\frac{\chi}{c}\biggr) \vec{F} \, , </math> |
plus the following pair of additional energy-conservation-based dynamical equations:
<math>~\rho \frac{d}{dt} \biggl( \frac{e}{\rho}\biggr) + P\nabla \cdot \vec{v} </math> |
<math>~=</math> |
<math>~ c\kappa_E E_\mathrm{rad} - 4\pi \kappa_p B_p \, , </math> |
<math>~\rho \frac{d}{dt} \biggl( \frac{E_\mathrm{rad}}{\rho}\biggr)</math> |
<math>~=</math> |
<math>~ - \biggl[ \nabla \cdot \vec{F} + \bold{P}_\mathrm{st}:\nabla{\vec{v}} + c\kappa_E E_\mathrm{rad} - 4\pi \kappa_p B_p \biggr] \, , </math> |
where, in this last expression, <math>~\bold{P}_\mathrm{st}</math> is the radiation stress tensor.
Various Realizations
First Law
By combining the continuity equation with the
First Law of Thermodynamics
<math>T \frac{ds}{dt} = \frac{d\epsilon}{dt} + P \frac{d}{dt} \biggl(\frac{1}{\rho}\biggr)</math> |
we can write,
<math>~\rho T\frac{ds}{dt}</math> |
<math>~=</math> |
<math>~ \rho \frac{d\epsilon}{dt} - \frac{P}{\rho} \frac{d\rho}{dt} </math> |
|
<math>~=</math> |
<math>~ \rho \frac{d\epsilon}{dt} + P\nabla\cdot \vec{v} \, . </math> |
Given that the specific internal energy <math>~(\epsilon)</math> and the internal energy density <math>~(e)</math> are related via the expression, <math>~\epsilon = e/\rho</math>, we appreciate that the first of the above-identified energy-conservation-based dynamical equations is simply a restatement of the 1st Law of Thermodynamics in the context of a physical system whose fluid elements gain or lose entropy as a result of the (radiation-transport-related) source and sink terms,
<math>~\rho T \frac{ds}{dt}</math> |
<math>~=</math> |
<math>~c\kappa_E E_\mathrm{rad} - 4\pi \kappa_p B_p \, .</math> |
Energy-Density of Radiation Field
By combining the left-hand side of the second of the above-identified energy-conservation-based dynamical equations with the continuity equation, then replacing the Lagrangian (that is, the material) time derivative by its Eulerian counterpart, the left-hand side can be rewritten as,
<math>~\rho \frac{d}{dt} \biggl( \frac{E_\mathrm{rad}}{\rho}\biggr)</math> |
<math>~=</math> |
<math>~ \frac{dE_\mathrm{rad}}{dt} - \frac{E_\mathrm{rad}}{\rho}~\frac{d\rho}{dt} </math> |
|
<math>~=</math> |
<math>~ \frac{dE_\mathrm{rad}}{dt} + E_\mathrm{rad}\nabla\cdot \vec{v} </math> |
|
<math>~=</math> |
<math>~ \frac{\partial E_\mathrm{rad}}{\partial t} + \vec{v}\cdot \nabla E_\mathrm{rad}+ E_\mathrm{rad}\nabla\cdot \vec{v} </math> |
|
<math>~=</math> |
<math>~ \frac{\partial E_\mathrm{rad}}{\partial t} + \nabla\cdot (E_\mathrm{rad} \vec{v}) \, , </math> |
which provides an alternate form of the expression, as found for example in equation (4) of Marcello & J. E. Tohline (2012).
Thermodynamic Equilibrium
In an optically thick environment that is in thermodynamic equilibrium at temperature, <math>~T</math>, the energy-density of the radiation field is,
<math>~E_\mathrm{rad}</math> |
<math>~=</math> |
<math>~a_\mathrm{rad}T^4 \, ,</math> |
and each fluid element will radiate — and, hence lose some of its internal energy to the surrounding radiation field — at a rate that is governed by the integrated Planck function,
<math>~B_p = \frac{\sigma}{\pi}T^4 </math> |
<math>~=</math> |
<math>~\frac{ca_\mathrm{rad}}{4\pi} T^4 \, ,</math> |
where, <math>~\sigma \equiv \tfrac{1}{4}c a_\mathrm{rad}</math>, is the Stefan-Boltzmann constant, and the radiation constant — which is included in an associated appendix among our list of key physical constants — is,
<math>~a_\mathrm{rad}</math> |
<math>~\equiv</math> |
<math>~\frac{8\pi^5}{15}\frac{k^4}{(hc)^3} \, .</math> |
Also under these conditions, it can be shown that — see, for example, discussion associated with equations (12) and (18) in Marcello & J. E. Tohline (2012) —
<math>~ \bold{P}_\mathrm{st} :\nabla{\vec{v}}</math> |
<math>~\rightarrow</math> |
<math>~\frac{E_\mathrm{rad}}{3} \nabla \cdot \vec{v} \, ,</math> |
and,
<math>~\vec{F}</math> |
<math>~\rightarrow</math> |
<math>~- \frac{1}{3}\biggl(\frac{c}{\chi}\biggr) \nabla E_\mathrm{rad} \, ,</math> |
which implies,
<math>~\biggl(\frac{\chi}{c}\biggr) \vec{F}</math> |
<math>~\rightarrow</math> |
<math>~-\nabla P_\mathrm{rad} \, ,</math> |
where we have recognized that the radiation pressure,
<math>~P_\mathrm{rad} = \frac{1}{3}E_\mathrm{rad}</math> |
<math>~=</math> |
<math>~\frac{1}{3}a_\mathrm{rad}T^4 \, .</math> |
Hence, the modified Euler equation becomes,
<math>~\rho ~ \frac{d\vec{v}}{dt}</math> |
<math>~=</math> |
<math>~ - \nabla (P+P_\mathrm{rad}) - \rho \nabla \Phi \, , </math> |
and the equation governing the time-dependent behavior of <math>~E_\mathrm{rad}</math> becomes,
<math>~\frac{\partial E_\mathrm{rad}}{\partial t} + \nabla\cdot (E_\mathrm{rad} \vec{v}) + \frac{1}{3}E_\mathrm{rad} \nabla \cdot \vec{v} </math> |
<math>~=</math> |
<math>~ - \nabla \cdot \vec{F} - c\kappa_E E_\mathrm{rad} + 4\pi \kappa_p B_p \, . </math> |
Optically Thick Regime
In the optically thick regime, the following conditions hold:
<math>~c\kappa_E E_\mathrm{rad}</math> |
<math>~\rightarrow</math> |
<math>~4\pi \kappa_p B_p \, ,</math> |
<math>~E_\mathrm{rad}</math> |
<math>~\rightarrow</math> |
<math>~aT^4 \, ,</math> |
<math>~\biggl(\frac{\chi}{c}\biggr) \vec{F}</math> |
<math>~\rightarrow</math> |
<math>~- \nabla \biggl(\frac{aT^4}{3} \biggr) \, ,</math> |
<math>~ \vec{\bold{P}}:\nabla{\vec{v}}</math> |
<math>~\rightarrow</math> |
<math>~\frac{E_\mathrm{rad}}{3} \nabla \cdot \vec{v} \, .</math> |
Start with,
<math>~Tds_\mathrm{rad} = dQ</math> |
<math>~=</math> |
<math>~ d\biggl(\frac{E_\mathrm{rad}}{\rho} \biggr) + P_\mathrm{rad~}d\biggl( \frac{1}{\rho} \biggr) </math> |
|
<math>~=</math> |
<math>~ \frac{1}{\rho}~d E_\mathrm{rad} + E_\mathrm{rad~}d\biggl( \frac{1}{\rho} \biggr) + P_\mathrm{rad~}d\biggl( \frac{1}{\rho} \biggr) </math> |
|
<math>~=</math> |
<math>~ \frac{1}{\rho}~d (aT^4 ) + \frac{4}{3} aT^4~d\biggl( \frac{1}{\rho} \biggr) </math> |
|
<math>~=</math> |
<math>~ \frac{4aT^3}{\rho}~dT + \frac{4}{3} aT^4~d\biggl( \frac{1}{\rho} \biggr) </math> |
|
<math>~=</math> |
<math>~ \frac{4aT}{3} \biggl[ \frac{3T^2}{\rho}~dT + T^3~d\biggl( \frac{1}{\rho} \biggr) \biggr] </math> |
|
<math>~=</math> |
<math>~ \frac{4aT}{3} ~d\biggl( \frac{T^3}{\rho} \biggr) </math> |
<math>~\Rightarrow ~~~ ds_\mathrm{rad}</math> |
<math>~=</math> |
<math>~ ~d\biggl( \frac{4aT^3}{3\rho} \biggr) </math> |
Integrating then gives us,
<math>~s_\mathrm{rad}</math> |
<math>~=</math> |
<math>~ ~\frac{4aT^3}{3\rho} + \mathrm{const.} </math> |
D. D. Clayton (1968), Eq. (2-136)
[Shu92], §9, immediately following Eq. (9.22)
This also means that,
<math>~\rho \frac{d}{dt} \biggl( \frac{E_\mathrm{rad}}{\rho}\biggr) + \frac{E_\mathrm{rad}}{3} \nabla\cdot\vec{v}</math> |
<math>~=</math> |
<math>~ \frac{dE_\mathrm{rad}}{dt} - \frac{E_\mathrm{rad}}{\rho} \frac{d\rho}{dt} + \frac{E_\mathrm{rad}}{3} \nabla\cdot\vec{v} </math> |
|
<math>~=</math> |
<math>~ \frac{dE_\mathrm{rad}}{dt} + \frac{4E_\mathrm{rad}}{3} \nabla\cdot\vec{v} </math> |
|
<math>~=</math> |
<math>~\frac{4E_\mathrm{rad}}{3} \biggl[ \frac{3}{4} \cdot \frac{d\ln E_\mathrm{rad}}{dt} + \nabla\cdot\vec{v} \biggr] </math> |
|
<math>~=</math> |
<math>~\frac{4E_\mathrm{rad}}{3} \biggl[ \frac{d\ln (E_\mathrm{rad})^{3/4}}{dt} + \nabla\cdot\vec{v} \biggr] </math> |
|
<math>~=</math> |
<math>~\frac{4E_\mathrm{rad}}{3} \biggl[ \frac{d\ln T^3}{dt} - \frac{d\ln\rho}{dt} \biggr] </math> |
|
<math>~=</math> |
<math>~\frac{4E_\mathrm{rad}}{3} \biggl[ \frac{d\ln (T^3/\rho)}{dt} \biggr] </math> |
|
<math>~=</math> |
<math>~\frac{4aT^4}{3} \biggl( \frac{\rho}{T^3}\biggr) \biggl[ \frac{d(T^3/\rho)}{dt} \biggr] </math> |
|
<math>~=</math> |
<math>~ \rho T\biggl[ \frac{ds_\mathrm{rad}}{dt} \biggr] \, . </math> |
Hence, the equation governing the time-dependent behavior of <math>~E_\mathrm{rad}</math> becomes an expression detailing the time-dependent behavior of the specific entropy, namely,
<math>~\rho T~\frac{ds_\mathrm{rad}}{dt} </math> |
<math>~=</math> |
<math>~ - \nabla \cdot \vec{F} - c\kappa_E E_\mathrm{rad} + 4\pi \kappa_p B_p \, . </math> |
[Shu92], §9, Eq. (9.22)
Related Discussions
- Euler equation viewed from a rotating frame of reference.
- An earlier draft of this "Euler equation" presentation.
© 2014 - 2021 by Joel E. Tohline |