Difference between revisions of "User:Tohline/PGE/FirstLawOfThermodynamics"
Line 7: | Line 7: | ||
==Standard Presentation== | ==Standard Presentation== | ||
Following the detailed discussion of the laws of thermodynamics that can be found, for example, in Chapter I of [<b>[[User:Tohline/Appendix/References#C67|<font color="red">C67</font>]]</b>] we know that, | Following the detailed discussion of the laws of thermodynamics that can be found, for example, in Chapter I of [<b>[[User:Tohline/Appendix/References#C67|<font color="red">C67</font>]]</b>] we know that, for an infinitesimal quasi-statical change of state, the change <math>~dQ</math> in the total heat content <math>~Q</math> of a fluid element is given by the, | ||
<div align="center"> | <div align="center"> | ||
<span id=" | <span id="FundamentalLaw"><font color="#770000">'''Fundamental Law of Thermodynamics'''</font></span> | ||
<table border="0" cellpadding="5" align="center"> | <table border="0" cellpadding="5" align="center"> | ||
Line 50: | Line 49: | ||
</tr> | </tr> | ||
</table> | </table> | ||
[<b>[[User:Tohline/Appendix/References#C67|<font color="red">C67</font>]]</b>], Chapter II, Eq. (44)<br /> | [<b>[[User:Tohline/Appendix/References#C67|<font color="red">C67</font>]]</b>], Chapter I, Eq. (76) & Chapter II, Eq. (44)<br /> | ||
[<b>[[User:Tohline/Appendix/References#CH87|<font color="red">H87</font>]]</b>], §1.4, p. 16 | [<b>[[User:Tohline/Appendix/References#CH87|<font color="red">H87</font>]]</b>], §1.4, p. 16 | ||
</div> | </div> | ||
Line 64: | Line 63: | ||
[<b>[[User:Tohline/Appendix/References#T78|<font color="red">T78</font>]]</b>], §3.4, Eq. (64)<br /> | [<b>[[User:Tohline/Appendix/References#T78|<font color="red">T78</font>]]</b>], §3.4, Eq. (64)<br /> | ||
[<b>[[User:Tohline/Appendix/References#Shu92|<font color="red">Shu92</font>]]</b>], Chapter 4, Eq. (4.27)<br /> | |||
[<b>[[User:Tohline/Appendix/References#HK94|<font color="red">HK94</font>]]</b>], §7.3.3, Eq. (7.162) | [<b>[[User:Tohline/Appendix/References#HK94|<font color="red">HK94</font>]]</b>], §7.3.3, Eq. (7.162) | ||
</div> | </div> | ||
If the state changes occur in such a way that no heat seeps into or leaks out of the fluid element, then <math>~ds/dt = 0</math> and the changes are said to have been made ''adiabatically.'' For an adiabatically evolving system, therefore, the ''First Law'' assumes | If the state changes occur in such a way that no heat seeps into or leaks out of the fluid element, then <math>~ds/dt = 0</math> and the changes are said to have been made ''adiabatically.'' For an adiabatically evolving system, therefore, the ''First Law'' assumes what henceforth will be referred to as the, | ||
<div align="center"> | <div align="center"> | ||
Line 75: | Line 75: | ||
{{ User:Tohline/Math/EQ_FirstLaw02 }} | {{ User:Tohline/Math/EQ_FirstLaw02 }} | ||
[<b>[[User:Tohline/Appendix/References#C67|<font color="red">C67</font>]]</b>], Chapter II, Eq. (13)<br /> | |||
[<b>[[User:Tohline/Appendix/References#T78|<font color="red">T78</font>]]</b>], §3.4, Eq. (70) | [<b>[[User:Tohline/Appendix/References#T78|<font color="red">T78</font>]]</b>], §3.4, Eq. (70) | ||
</div> | </div> |
Revision as of 16:49, 24 October 2018
First Law of Thermodynamics
| Tiled Menu | Tables of Content | Banner Video | Tohline Home Page | |
Standard Presentation
Following the detailed discussion of the laws of thermodynamics that can be found, for example, in Chapter I of [C67] we know that, for an infinitesimal quasi-statical change of state, the change <math>~dQ</math> in the total heat content <math>~Q</math> of a fluid element is given by the,
Fundamental Law of Thermodynamics
<math>~dQ</math> |
<math>~=</math> |
<math>~ d\epsilon + PdV \, , </math> |
[C67], Chapter II, Eq. (2)
[H87], §1.2, Eq. (1.2)
[KW94], §4.1, Eq. (4.1)
[BLRY07], §1.6.5, Eq. (1.124)
where, <math>~\epsilon</math> is the specific internal energy, <math>~P</math> is the pressure, and <math>~V</math><math>~= 1/</math><math>~\rho</math> is the specific volume of the fluid element. Generally, the change in the total heat content can be rewritten in terms of the gas temperature, <math>~T</math>, and the specific entropy of the fluid, <math>~s</math>, via the expression,
<math>~dQ</math> |
<math>~=</math> |
<math>~T ds \, .</math> |
[C67], Chapter I, Eq. (76) & Chapter II, Eq. (44)
[H87], §1.4, p. 16
If, in addition, it is understood that the specified changes are occurring over an interval of time <math>~dt</math>, then from this pair of expressions we derive what will henceforth be referred to as the,
Standard Form
of the First Law of Thermodyamics
<math>T \frac{ds}{dt} = \frac{d\epsilon}{dt} + P \frac{d}{dt} \biggl(\frac{1}{\rho}\biggr)</math> |
[T78], §3.4, Eq. (64)
[Shu92], Chapter 4, Eq. (4.27)
[HK94], §7.3.3, Eq. (7.162)
If the state changes occur in such a way that no heat seeps into or leaks out of the fluid element, then <math>~ds/dt = 0</math> and the changes are said to have been made adiabatically. For an adiabatically evolving system, therefore, the First Law assumes what henceforth will be referred to as the,
Adiabatic Form
of the First Law of Thermodyamics
<math>~\frac{d\epsilon}{dt} + P \frac{d}{dt} \biggl(\frac{1}{\rho}\biggr) = 0</math>
Clearly this form of the First Law also may be viewed as a statement of specific entropy conservation.
Entropy Tracer
Multiplying the Adiabatic Form of the First Law of Thermodynamics through by <math>~\rho</math> and rearranging terms, we find that,
<math>~0</math> |
<math>~=</math> |
<math>~ \rho\frac{d\epsilon}{dt} + \rho P \frac{d}{dt}\biggl(\frac{1}{\rho} \biggr) </math> |
|
<math>~=</math> |
<math>~ \frac{d(\rho\epsilon)}{dt} - \epsilon \frac{d\rho}{dt} - \frac{P}{\rho} \frac{d\rho}{dt} </math> |
|
<math>~=</math> |
<math>~ \frac{d(\rho\epsilon)}{dt} - (P + \rho\epsilon) \frac{1}{\rho}\frac{d\rho}{dt} </math> |
|
<math>~=</math> |
<math>~ \frac{d(\rho\epsilon)}{dt} - (P + \rho\epsilon)\frac{d\ln\rho}{dt} </math> |
is an equally valid statement of the conservation of specific entropy in an adiabatic flow. In combination, first, with
Form B
of the Ideal Gas Equation
<math>~P = (\gamma_\mathrm{g} - 1)\epsilon \rho </math>
and, second, with the
Lagrangian Form
of the Continuity Equation
<math>\frac{d\rho}{dt} + \rho \nabla \cdot \vec{v} = 0</math> |
we may furthermore rewrite this expression as,
<math>~\frac{d(\rho\epsilon)}{dt}</math> |
<math>~=</math> |
<math>~ \gamma_g (\rho\epsilon)\frac{d\ln\rho}{dt} </math> |
<math>~\Rightarrow ~~~ \frac{1}{\gamma_g} \frac{d\ln(\rho\epsilon)}{dt}</math> |
<math>~=</math> |
<math>~ \frac{d\ln\rho}{dt} </math> |
<math>~\Rightarrow ~~~ \frac{d\ln(\rho\epsilon)^{1/\gamma_g}}{dt}</math> |
<math>~=</math> |
<math>~ - \nabla\cdot\vec{v} \, . </math> |
This relation has the classic form of a conservation law. It certifies that within the context of adiabatic flows the entropy tracer,
<math>~\tau \equiv (\rho\epsilon)^{1/\gamma_g} \, ,</math>
is the volume density of a conserved quantity. In this case, that conserved quantity is the specific entropy of each fluid element.
© 2014 - 2021 by Joel E. Tohline |