Difference between revisions of "User:Tohline/Appendix/Ramblings/RadiationHydro"
Line 50: | Line 50: | ||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
<math>~\frac{d}{dt} \biggl( \frac{e}{\rho}\biggr)</math> | <math>~\rho \frac{d}{dt} \biggl( \frac{e}{\rho}\biggr) + P\nabla \cdot \vec{v} </math> | ||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
Line 57: | Line 57: | ||
<td align="left"> | <td align="left"> | ||
<math>~ | <math>~ | ||
c\kappa_E E_\mathrm{rad} - 4\pi \kappa_p B_p \, , | |||
</math> | </math> | ||
</td> | </td> | ||
Line 64: | Line 64: | ||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
<math>~\frac{d}{dt} \biggl( \frac{E_\mathrm{rad}}{\rho}\biggr)</math> | <math>~\rho \frac{d}{dt} \biggl( \frac{E_\mathrm{rad}}{\rho}\biggr)</math> | ||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
Line 71: | Line 71: | ||
<td align="left"> | <td align="left"> | ||
<math>~ | <math>~ | ||
- | - \biggl[ \nabla \cdot \vec{F} + \vec{\bold{P}}:\nabla{\vec{v}} + c\kappa_E E_\mathrm{rad} - 4\pi \kappa_p B_p \biggr] \, . | ||
</math> | </math> | ||
</td> | </td> | ||
Line 129: | Line 129: | ||
</tr> | </tr> | ||
</table> | </table> | ||
=Related Discussions= | =Related Discussions= |
Revision as of 16:15, 21 October 2018
Radiation-Hydrodynamics
| Tiled Menu | Tables of Content | Banner Video | Tohline Home Page | |
Principal Governing Equations
Ignoring the Effects of Magnetic Fields
First, referencing §2 of J. C. Hayes et al. (2006, ApJS, 165, 188 - 228) — alternatively see §2.1 of D. C. Marcello & J. E. Tohline (2012, ApJS, 199, id. 35, 29 pp) — we see that the set of principal governing equations that is typically used in the astrophysics community to include the effects of radiation on self-gravitating fluid flows includes the,
the,
and — ignoring magnetic fields — a modified version of the,
Lagrangian Representation
of the Euler Equation,
<math>~\frac{d\vec{v}}{dt}</math> |
<math>~=</math> |
<math>~ - \frac{1}{\rho}\nabla P - \nabla \Phi + \frac{1}{\rho}\biggl(\frac{\chi}{c}\biggr) \vec{F} \, , </math> |
plus the following pair of additional energy-conservation-based dynamical equations:
<math>~\rho \frac{d}{dt} \biggl( \frac{e}{\rho}\biggr) + P\nabla \cdot \vec{v} </math> |
<math>~=</math> |
<math>~ c\kappa_E E_\mathrm{rad} - 4\pi \kappa_p B_p \, , </math> |
<math>~\rho \frac{d}{dt} \biggl( \frac{E_\mathrm{rad}}{\rho}\biggr)</math> |
<math>~=</math> |
<math>~ - \biggl[ \nabla \cdot \vec{F} + \vec{\bold{P}}:\nabla{\vec{v}} + c\kappa_E E_\mathrm{rad} - 4\pi \kappa_p B_p \biggr] \, . </math> |
Optically Thick Regime
In the optically thick regime, the following conditions hold:
<math>~c\kappa_E E_\mathrm{rad}</math> |
<math>~\rightarrow</math> |
<math>~4\pi \kappa_p B_p \, ,</math> |
<math>~E_\mathrm{rad}</math> |
<math>~\rightarrow</math> |
<math>~aT^4 \, ,</math> |
<math>~\biggl(\frac{\chi}{c}\biggr) \vec{F}</math> |
<math>~\rightarrow</math> |
<math>~- \nabla \biggl(\frac{aT^4}{3} \biggr) \, ,</math> |
<math>~ \vec{\bold{P}}:\nabla{\vec{v}}</math> |
<math>~\rightarrow</math> |
<math>~\frac{E_\mathrm{rad}}{3} \nabla \cdot \vec{v} \, .</math> |
Related Discussions
- Euler equation viewed from a rotating frame of reference.
- An earlier draft of this "Euler equation" presentation.
© 2014 - 2021 by Joel E. Tohline |