Difference between revisions of "User:Tohline/Apps/Wong1973Potential"

From VistrailsWiki
Jump to navigation Jump to search
(Created page with '__FORCETOC__ <!-- __NOTOC__ will force TOC off --> =Wong's (1973) Analytic Potential= NOTE:   An [[User:Tohline/2DStructure/ToroidalCoordinates#Using_Toroidal_Coordinates_…')
 
Line 6: Line 6:


{{LSU_HBook_header}}
{{LSU_HBook_header}}
==Uniform-Density Torus==
From an [[User:Tohline/Apps/DysonWongTori#Introducing_Toroidal_Coordinates|accompanying review]], we see that for a torus of major radius <math>~R</math> and minor radius <math>~d</math>, the most accommodating (cylindrical-coordinate-based) radial  coordinate location of the toroidal coordinate system's ''anchor ring'', <math>~a</math>, is defined such that,
<div align="center">
<table border="0" cellpadding="5" align="center">
<tr>
  <td align="right">
<math>~a^2</math>
  </td>
  <td align="center">
<math>~\equiv</math>
  </td>
  <td align="left">
<math>~R^2 - d^2 \, .</math>
  </td>
</tr>
<tr>
  <td align="center" colspan="3">
[http://adsabs.harvard.edu/abs/1973AnPhy..77..279W Wong (1973)], Eq. (2.8)
  </td>
</tr>
</table>
</div>
Then the corresponding (toroidal-coordinate-based) radial coordinate location <math>~\eta_0</math> of the surface of the torus is,
<div align="center">
<table border="0" cellpadding="5" align="center">
<tr>
  <td align="right">
<math>~\eta_0</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~\cosh^{-1}\biggl(\frac{R}{d}\biggr) \, .</math>
  </td>
</tr>
<tr>
  <td align="center" colspan="3">
[http://adsabs.harvard.edu/abs/1973AnPhy..77..279W Wong (1973)], Eq. (2.9)
  </td>
</tr>
</table>
</div>
Alternatively, given <math>~\eta_0</math> and the value of the parameter <math>~a</math>, we have,
<div align="center">
<table border="0" cellpadding="5" align="center">
<tr>
  <td align="right">
<math>~R</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~a \coth\eta_0 \, ,</math>
  </td>
</tr>
<tr>
  <td align="right">
<math>~d</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~\frac{a}{\sinh\eta_0} \, .</math>
  </td>
</tr>
<tr>
  <td align="center" colspan="3">
[http://adsabs.harvard.edu/abs/1973AnPhy..77..279W Wong (1973)], Eqs. (2.10) &amp; (2.11)
  </td>
</tr>
</table>
</div>
If such an axisymmetric torus has a uniform density, <math>~\rho_0</math>, then according to the Cohl &amp; Tohline (1999) expression, the gravitational potential is,
<table border="0" cellpadding="5" align="center">
<tr>
  <td align="right">
<math>~\Phi_\mathrm{CT}(\eta,\theta)</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~ - 2G\rho_0 a^2 \biggl[ \frac{(\cosh\eta - \cos\theta)}{\sinh\eta } \biggr]^{1 / 2}
\int_{\eta_0}^\infty d\eta^' \int_{-\pi}^\pi d\theta^' \biggl[ \frac{\sinh\eta^'}{(\cosh\eta^' - \cos\theta^')^5} \biggr]^{1 / 2} Q_{- 1 / 2}(\Chi)  \, .
</math>
  </td>
</tr>
</table>
In contrast, according to Wong's (1973) expression, the gravitational potential is,
<table border="0" cellpadding="5" align="center">
<tr>
  <td align="right">
<math>~\Phi_\mathrm{W}(\eta,\theta)</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
- 2G \rho_0 a^2 (\cosh\eta - \cos\theta)^{1 / 2}
\sum\limits^\infty_{n=0} \epsilon_n
\int_{\eta_0}^\infty d\eta^' ~\sinh\eta^'~P_{n-1 / 2}(\cosh\eta_<) ~Q_{n-1 / 2}(\cosh\eta_>)
\int_{-\pi}^\pi \frac{ \cos[n(\theta - \theta^')] d\theta^' }{(\cosh\eta^' - \cos\theta^')^{5/2}}
\, .
</math>
  </td>
</tr>
<tr>
  <td align="center" colspan="3">
[http://adsabs.harvard.edu/abs/1973AnPhy..77..279W Wong (1973)], p. 293, Eq. (2.55)
  </td>
</tr>
</table>
===Which Is Easier to Evaluate?===
Upon evaluation, the expressions for <math>~\Phi_\mathrm{CT}</math> and for <math>~\Phi_\mathrm{W}</math> should give identical values for the gravitational potential at all coordinate locations <math>~(\eta,\theta)</math> across the entire meridional plane.  But which of the two expressions is easier to evaluate?
====CT====
If the desire is to perform the evaluation numerically, then the <math>~\Phi_\mathrm{CT}</math> expression is almost certainly easier to contend with.  It ''only'' requires a double integration; and as has been detailed in an [[User:Tohline/2DStructure/ToroidalCoordinates#Expression_for_the_Axisymmetric_Potential|accompanying discussion]], the only relatively unfamiliar special function that appears in the integrand, <math>~Q_{-\frac{1}{2}}(\Chi)</math>, can be re-expressed in terms of (the more familiar) complete elliptic integral of the first kind, namely,
<table border="0" cellpadding="5" align="center">
<tr>
  <td align="right">
<math>~Q_{-\frac{1}{2}}(\Chi)</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
\mu K(\mu) \, ,
</math>
  </td>
</tr>
</table>
where,
<table border="0" cellpadding="5" align="center">
<tr>
  <td align="right">
<math>~\mu</math>
  </td>
  <td align="center">
<math>~\equiv</math>
  </td>
  <td align="left">
<math>~\biggl[ \frac{2}{\Chi + 1} \biggr]^{1 / 2}</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~\biggl[ \frac{2 \sinh\eta \cdot \sinh\eta^' }{ \cosh(\eta^' + \eta) - \cos(\theta^' - \theta) } \biggr]^{1 / 2} \, .</math>
  </td>
</tr>
</table>
The task is daunting, however, if the desire is to evaluate the expression for <math>~\Phi_\mathrm{CT}</math> ''analytically.'' To our knowledge, no one has yet been able to start from the expression as presented here for <math>~\Phi_\mathrm{CT}</math> and complete the integral over the angular coordinate, <math>~\theta^'</math>, analytically, let alone analytically evaluate the second, ''radial'' integral.  This is principally because the integrand of the first (angular) integral contains a nontrivial function multiplied by a special function whose argument is, itself, a nontrivial function of both <math>~\theta^'</math> and <math>~\eta^'</math>.
====W====
At first glance, the expression for <math>~\Phi_\mathrm{W}</math> is much more complex than the expression for <math>~\Phi_\mathrm{CT}</math>.  It not only requires a double integration, but also an infinite-series summation over the integer index, <math>~n</math>; and the radial integrand contains a product of two (relatively unfamiliar) associated Legendre functions of various half-integer orders (toroidal functions).  Developing a numerical algorithm to evaluate <math>~\Phi_\mathrm{W}</math> to a certain accuracy &#8212; presumably set by the number of terms included in the summation over <math>~n</math> &#8212; would certainly be a more challenging task than developing a numerical algorithm to evaluate <math>~\Phi_\mathrm{CT}</math>.
=====Analytic Integration Over the Angular Coordinate=====
However, focusing only on the integration over the angular coordinate, we see that the integrand in the expression for <math>~\Phi_\mathrm{W}</math> is significantly less imposing than the one that appears in the expression for <math>~\Phi_\mathrm{CT}</math>.  [http://adsabs.harvard.edu/abs/1973AnPhy..77..279W Wong (1973)] was able to evaluate this definite integral in closed form, analytically.  While Wong does not record the detailed steps that he used to evaluate this definite integral, he does indicate that he received guidance from Volume I of [https://authors.library.caltech.edu/43491/1/Volume%201.pdf A. Erd&eacute;lyi's (1953)] ''Higher Transcendental Functions''.  We therefore presume that he adopted the line of reasoning that we have [[#A.3|detailed in the Appendix, below, in deriving the expression labeled]] <font color="green" size="+1">&#x2462;</font>.  Wong recognized, what we have explicitly demonstrated, namely,
<table border="0" cellpadding="5" align="center">
<tr>
  <td align="right">
<math>~\int_{-\pi}^\pi d\theta^' (\cosh\eta^' - \cos\theta^')^{- 5 / 2} \cos[n(\theta - \theta^')]</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="right">
<math>~2\cos(n\theta)
\int_0^\pi \frac{ \cos(n\theta^')~d\theta^' }{ (\cosh\eta^' - \cos \theta^')^{\frac{5}{2}} }
</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
\frac{8\sqrt{2}}{3} \biggl[ \frac{\cos(n\theta)}{\sinh^2\eta^'} \biggr] Q^2_{n- \frac{1}{2}} (\cosh\eta^') \,.
</math>
  </td>
</tr>
<tr>
  <td align="center" colspan="5">
[http://adsabs.harvard.edu/abs/1973AnPhy..77..279W Wong (1973)], p. 293, Eq. (2.56)
  </td>
</tr>
</table>
<table border="1" cellpadding="10" align="center" width="90%"><tr><td align="left">
<font color="red">'''CAUTION:'''</font>&nbsp; It is important to appreciate that, in this expression as well as in the expressions to follow, the term, <math>~Q^2_{n-\frac{1}{2}}(z)</math>, is ''not'' the square of the zero-order toroidal function, <math>~Q^0_{n - \frac{1}{2}}(z)</math>, but is instead the toroidal function of order two.  In an [[User:Tohline/Appendix/Mathematics/ToroidalSynopsis01#Evaluating_Q2.CE.BD|accompanying discussion]] we present an analytic expression for <math>~Q^2_{-\frac{1}{2}}(z)</math> &#8212; and a separate analytic expression for <math>~Q^1_{-\frac{1}{2}}(z)</math> &#8212; in terms of complete elliptic integrals, as well as a recurrence relation that can be used to generate analytic expressions for all other order-two (and all other order-one) toroidal functions that have higher half-integer degrees, <math>~n-\tfrac{1}{2}</math> for <math>~n \ge 1</math>.
</td></tr></table>
Hence, Wong was able to simplify the expression for <math>~\Phi_\mathrm{W}</math> to one that &#8212; albeit, in addition to an infinite summation over the index, <math>~n</math> &#8212; only requires integration over the radial coordinate, <math>~\eta^'</math>.  Specifically, he obtained,
<table border="0" cellpadding="5" align="center">
<tr>
  <td align="right">
<math>~\Phi_\mathrm{W}(\eta,\theta)</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
- 2G \rho_0 a^2 (\cosh\eta - \cos\theta)^{1 / 2}
\sum\limits^\infty_{n=0} \epsilon_n
\int_{\eta_0}^\infty d\eta^' ~\sinh\eta^'~P_{n-1 / 2}(\cosh\eta_<) ~Q_{n-1 / 2}(\cosh\eta_>)\biggl\{
\frac{8\sqrt{2}}{3} \biggl[ \frac{\cos(n\theta)}{\sinh^2\eta^'} \biggr] Q^2_{n- \frac{1}{2}} (\cosh\eta^')
\biggr\}
</math>
  </td>
</tr>
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
- \biggl( \frac{16\sqrt{2}}{3}  \biggr) G \rho_0 a^2 (\cosh\eta - \cos\theta)^{1 / 2}
\sum\limits^\infty_{n=0} \epsilon_n \cos(n\theta)
\int_{\eta_0}^\infty d\eta^' \Biggl[ \frac{Q^2_{n- \frac{1}{2}} (\cosh\eta^')}{\sinh\eta^'} \Biggr] ~P_{n-1 / 2}(\cosh\eta_<) ~Q_{n-1 / 2}(\cosh\eta_>)
\, .
</math>
  </td>
</tr>
<tr>
  <td align="center" colspan="3">
[http://adsabs.harvard.edu/abs/1973AnPhy..77..279W Wong (1973)], p. 294, Eq. (2.57)
  </td>
</tr>
</table>
=====Analytic Integration Over the Radial Coordinate=====
Now, in considering how to handle integration over the radial coordinate, <math>~\eta^'</math>, let's examine, first, the case where <math>~\eta^' \ge \eta_0 > \eta</math>, that is, the potential is being evaluated at a location that is entirely outside of the torus.  In this case,
<table border="0" cellpadding="5" align="center">
<tr>
  <td align="right">
<math>~\Phi_\mathrm{W}(\eta,\theta)</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
- \biggl( \frac{16\sqrt{2}}{3}  \biggr) G \rho_0 a^2 (\cosh\eta - \cos\theta)^{1 / 2}
\sum\limits^\infty_{n=0} \epsilon_n \cos(n\theta) ~P_{n-1 / 2}(\cosh\eta)
\int_{\eta_0}^\infty d\eta^' \Biggl[ \frac{Q^2_{n- \frac{1}{2}} (\cosh\eta^')}{\sinh\eta^'} \Biggr] ~Q_{n-1 / 2}(\cosh\eta^')
\, .
</math>
  </td>
</tr>
</table>
So we are interested in carrying out the "radial" integral,
<table border="0" cellpadding="5" align="center">
<tr>
  <td align="right">
<math>~
\int_{\eta_0}^\infty d\eta^' \sinh\eta^' \Biggl[ \frac{Q^2_{n- \frac{1}{2}} (\cosh\eta^')}{\sinh^2\eta^'} \Biggr] ~Q_{n-1 / 2}(\cosh\eta^')
</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
\int_{\cosh(\eta_0)}^{\cosh(\infty)} dt \Biggl[ \frac{Q^2_{n- \frac{1}{2}} (t)~Q_{n-\frac{1}{2}}(t)}{t^2 - 1} \Biggr]  \, ,
</math>
  </td>
</tr>
</table>
where we have made the association, <math>~\cosh\eta^' \rightarrow t</math>, in which case, <math>~dt = \sinh\eta^' d\eta^'</math>.  Following the line of reasoning that we have [[#A.4|detailed in the Appendix, below, in deriving the expression labeled]] <font color="green" size="+1">&#x2463;</font>, this integral can be evaluated in closed form to give,
<table border="0" cellpadding="5" align="center">
<tr>
  <td align="right">
<math>~
\int_a^b\biggl[  \frac{Q_{n - \frac{1}{2}}^2(t) ~Q_{n - \frac{1}{2}}(t) }{(t^2-1)}\biggr]~dt
</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
\frac{1}{4} \biggl[
(n - \tfrac{3}{2})Q^2_{n + \frac{1}{2}}(t) ~ Q_{n - \frac{1}{2}}(t)
-  (n+\tfrac{1}{2})Q_{n+\frac{1}{2}}(t) Q_{n - \frac{1}{2}}^2(t)
\biggr]_a^b \, .
</math>
  </td>
</tr>
<tr>
  <td align="center" colspan="3">
[http://adsabs.harvard.edu/abs/1973AnPhy..77..279W Wong (1973)], Eq. (2.58)
  </td>
</tr>
</table>
Hence, we have,
<table border="0" cellpadding="5" align="center">
<tr>
  <td align="right">
<math>~\Phi_\mathrm{W}(\eta,\theta)</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
- \biggl( \frac{4\sqrt{2}}{3}  \biggr) G \rho_0 a^2 (\cosh\eta - \cos\theta)^{1 / 2}
\sum\limits^\infty_{n=0} \epsilon_n \cos(n\theta)
</math>
  </td>
</tr>
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
&nbsp;
  </td>
  <td align="left">
<math>~
\times P_{n-1 / 2}(\cosh\eta)
\biggl[
(n - \tfrac{3}{2})Q^2_{n + \frac{1}{2}}(t) ~ Q_{n - \frac{1}{2}}(t)
-  (n+\tfrac{1}{2})Q_{n+\frac{1}{2}}(t) Q_{n - \frac{1}{2}}^2(t)
\biggr]_{t = \cosh \eta_0}^{t = \cosh\infty} \, .
</math>
  </td>
</tr>
</table>
Or, given that, in this uniform-density configuration, the [[User:Tohline/Apps/DysonWongTori#DensityFormula|density is exactly the mass divided by the torus volume]], that is,
<table border="0" cellpadding="5" align="center">
<tr>
  <td align="right">
<math>~\rho_0 = \frac{M}{V}</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~\frac{M \sinh^3\eta_0}{2\pi^2 a^3 \cosh{\eta_0}} \, ,</math>
  </td>
</tr>
</table>
we have,
<table border="0" cellpadding="5" align="center">
<tr>
  <td align="right">
<math>~\Phi_\mathrm{W}(\eta,\theta)</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
-  \frac{2\sqrt{2}~ GM}{3\pi^2 a}  \biggl[ \frac{\sinh^3\eta_0}{ \cosh{\eta_0}} \biggr] (\cosh\eta - \cos\theta)^{1 / 2}
\sum\limits^\infty_{n=0} \epsilon_n \cos(n\theta)
</math>
  </td>
</tr>
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
&nbsp;
  </td>
  <td align="left">
<math>~
\times P_{n-1 / 2}(\cosh\eta)
\biggl[
(n - \tfrac{3}{2})Q^2_{n + \frac{1}{2}}(t) ~ Q_{n - \frac{1}{2}}(t)
-  (n+\tfrac{1}{2})Q_{n+\frac{1}{2}}(t) Q_{n - \frac{1}{2}}^2(t)
\biggr]_{t = \cosh \eta_0}^{t = \cosh\infty} \, .
</math>
  </td>
</tr>
</table>
In a [[User:Tohline/Appendix/Mathematics/ToroidalFunctions#Asymptotic_Behavior|separate chapter]], we have examined the asymptotic behavior of the toroidal functions, <math>~Q_{n-\tfrac{1}{2}}(t)</math>, which is,
<table border="0" cellpadding="5" align="center">
<tr>
  <td align="right">
<math>~\lim_{\chi\rightarrow \infty} Q_{n-\frac{1}{2}}(t)</math>
  </td>
  <td align="center">
<math>~\propto</math>
  </td>
  <td align="left">
<math>~
\frac{1}{t^{n+\frac{1}{2}} } \, .
</math>
  </td>
</tr>
</table>
This means that, at the upper integration limit, these toroidal functions go to zero.  As a result, we can write,
<table border="1" align="center" cellpadding="8">
<tr><td align="center">Exterior Solution: &nbsp;<math>~\eta_0 \ge \eta</math></td></tr>
<tr><td align="left">
<table border="0" cellpadding="5" align="center">
<tr>
  <td align="right">
<math>~\Phi_\mathrm{W}(\eta,\theta)</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
-  \frac{2\sqrt{2}~ GM}{3\pi^2 a}  \biggl[ \frac{\sinh^3\eta_0}{ \cosh{\eta_0}} \biggr] (\cosh\eta - \cos\theta)^{1 / 2}
\sum\limits^\infty_{n=0} \epsilon_n \cos(n\theta)
</math>
  </td>
</tr>
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
&nbsp;
  </td>
  <td align="left">
<math>~
\times P_{n-1 / 2}(\cosh\eta)
\biggl[
(n+\tfrac{1}{2})Q_{n+\frac{1}{2}}(\cosh \eta_0) Q_{n - \frac{1}{2}}^2(\cosh \eta_0)
- (n - \tfrac{3}{2})Q^2_{n + \frac{1}{2}}(\cosh \eta_0) ~ Q_{n - \frac{1}{2}}(\cosh \eta_0)
\biggr] \, .
</math>
  </td>
</tr>
</table>
</td></tr>
</table>
This expression matches the potential for the ''exterior region'' that is obtained by combining [http://adsabs.harvard.edu/abs/1973AnPhy..77..279W Wong's (1973)] Eqs. (2.59), (2.61) and (2.63).
Now, let's examine the potential evaluated at a radial location, <math>~\eta</math>, that is positioned inside the surface of the torus.  That is, <math>~\eta_0 < \eta \le \infty</math>.  We need to add expressions that have two different sets of integration limits as follows.  First, over the subregion, <math>~\eta \le \eta^' \le \infty</math>, we use the same expression for <math>~\Phi_\mathrm{W}</math> but employ the new limits, as indicated; and second, over the subregion <math>~\eta_0 \le \eta^' \le \eta</math>, we swap the roles of <math>~P_{n-\frac{1}{2}}</math> and <math>~Q_{n-\frac{1}{2}}</math>.
<table border="0" cellpadding="5" align="center">
<tr>
  <td align="right">
<math>~\Phi_\mathrm{W}(\eta,\theta)</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
\Phi_\mathrm{W}|_\mathrm{subregion1} + \Phi_\mathrm{W}|_\mathrm{subregion2}
</math>
  </td>
</tr>
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
-  \frac{2\sqrt{2}~ GM}{3\pi^2 a}  \biggl[ \frac{\sinh^3\eta_0}{ \cosh{\eta_0}} \biggr] (\cosh\eta - \cos\theta)^{1 / 2}
\sum\limits^\infty_{n=0} \epsilon_n \cos(n\theta)
</math>
  </td>
</tr>
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
&nbsp;
  </td>
  <td align="left">
<math>~
\times P_{n-1 / 2}(\cosh\eta)
\biggl[
(n - \tfrac{3}{2})Q^2_{n + \frac{1}{2}}(t) ~ Q_{n - \frac{1}{2}}(t)
-  (n+\tfrac{1}{2})Q_{n+\frac{1}{2}}(t) Q_{n - \frac{1}{2}}^2(t)
\biggr]_{t = \cosh \eta}^{t = \cosh\infty}
</math>
  </td>
</tr>
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
&nbsp;
  </td>
  <td align="left">
<math>~
-  \frac{2\sqrt{2}~ GM}{3\pi^2 a}  \biggl[ \frac{\sinh^3\eta_0}{ \cosh{\eta_0}} \biggr] (\cosh\eta - \cos\theta)^{1 / 2}
\sum\limits^\infty_{n=0} \epsilon_n \cos(n\theta)
</math>
  </td>
</tr>
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
&nbsp;
  </td>
  <td align="left">
<math>~
\times Q_{n-1 / 2}(\cosh\eta)
\biggl[
(n - \tfrac{3}{2})Q^2_{n + \frac{1}{2}}(t) ~ P_{n - \frac{1}{2}}(t)
-  (n+\tfrac{1}{2})P_{n+\frac{1}{2}}(t) Q_{n - \frac{1}{2}}^2(t)
\biggr]_{t = \cosh \eta_0}^{t = \cosh\eta}
</math>
  </td>
</tr>
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
-  \frac{2\sqrt{2}~ GM}{3\pi^2 a}  \biggl[ \frac{\sinh^3\eta_0}{ \cosh{\eta_0}} \biggr] (\cosh\eta - \cos\theta)^{1 / 2}
\sum\limits^\infty_{n=0} \epsilon_n \cos(n\theta)
</math>
  </td>
</tr>
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
&nbsp;
  </td>
  <td align="left">
<math>~
\times \biggl\{ P_{n-1 / 2}(\cosh\eta)
\biggl[
(n+\tfrac{1}{2})Q_{n+\frac{1}{2}}(\cosh\eta) Q_{n - \frac{1}{2}}^2(\cosh\eta)
- (n - \tfrac{3}{2})Q^2_{n + \frac{1}{2}}(\cosh\eta) ~ Q_{n - \frac{1}{2}}(\cosh\eta)
\biggr]
</math>
  </td>
</tr>
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
&nbsp;
  </td>
  <td align="left">
<math>~
+ Q_{n-1 / 2}(\cosh\eta)
\biggl[
(n - \tfrac{3}{2})Q^2_{n + \frac{1}{2}}(\cosh\eta) ~ P_{n - \frac{1}{2}}(\cosh\eta)
-  (n+\tfrac{1}{2})P_{n+\frac{1}{2}}(\cosh\eta) Q_{n - \frac{1}{2}}^2(\cosh\eta)
\biggr]
</math>
  </td>
</tr>
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
&nbsp;
  </td>
  <td align="left">
<math>~
- Q_{n-1 / 2}(\cosh\eta)
\biggl[
(n - \tfrac{3}{2})Q^2_{n + \frac{1}{2}}(\cosh{\eta_0}) ~ P_{n - \frac{1}{2}}(\cosh{\eta_0})
-  (n+\tfrac{1}{2})P_{n+\frac{1}{2}}(\cosh{\eta_0}) Q_{n - \frac{1}{2}}^2(\cosh{\eta_0})
\biggr]
\biggr\}
</math>
  </td>
</tr>
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
-  \frac{2\sqrt{2}~ GM}{3\pi^2 a}  \biggl[ \frac{\sinh^3\eta_0}{ \cosh{\eta_0}} \biggr] (\cosh\eta - \cos\theta)^{1 / 2}
\sum\limits^\infty_{n=0} \epsilon_n \cos(n\theta)
</math>
  </td>
</tr>
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
&nbsp;
  </td>
  <td align="left">
<math>~
\times \biggl\{ P_{n-1 / 2}(\cosh\eta)
\biggl[
(n+\tfrac{1}{2})Q_{n+\frac{1}{2}}(\cosh\eta) Q_{n - \frac{1}{2}}^2(\cosh\eta)
\biggr]
- Q_{n-1 / 2}(\cosh\eta)
\biggl[
(n+\tfrac{1}{2})P_{n+\frac{1}{2}}(\cosh\eta) Q_{n - \frac{1}{2}}^2(\cosh\eta)
\biggr]
</math>
  </td>
</tr>
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
&nbsp;
  </td>
  <td align="left">
<math>~
- Q_{n-1 / 2}(\cosh\eta)
\biggl[
(n - \tfrac{3}{2})Q^2_{n + \frac{1}{2}}(\cosh{\eta_0}) ~ P_{n - \frac{1}{2}}(\cosh{\eta_0})
-  (n+\tfrac{1}{2})P_{n+\frac{1}{2}}(\cosh{\eta_0}) Q_{n - \frac{1}{2}}^2(\cosh{\eta_0})
\biggr]
\biggr\}
</math>
  </td>
</tr>
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
-  \frac{2\sqrt{2}~ GM}{3\pi^2 a}  \biggl[ \frac{\sinh^3\eta_0}{ \cosh{\eta_0}} \biggr] (\cosh\eta - \cos\theta)^{1 / 2}
\sum\limits^\infty_{n=0} \epsilon_n \cos(n\theta)
</math>
  </td>
</tr>
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
&nbsp;
  </td>
  <td align="left">
<math>~
\times \biggl\{ 
Q_{n-1 / 2}(\cosh\eta)
\biggl[
(n+\tfrac{1}{2})P_{n+\frac{1}{2}}(\cosh{\eta_0}) Q_{n - \frac{1}{2}}^2(\cosh{\eta_0})
- (n - \tfrac{3}{2}) ~ P_{n - \frac{1}{2}}(\cosh{\eta_0})~Q^2_{n + \frac{1}{2}}(\cosh{\eta_0})
\biggr]
</math>
  </td>
</tr>
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
&nbsp;
  </td>
  <td align="left">
<math>~
- (n+\tfrac{1}{2})Q_{n - \frac{1}{2}}^2(\cosh\eta)  \biggl[
Q_{n-1 / 2}(\cosh\eta) P_{n+\frac{1}{2}}(\cosh\eta)
- Q_{n+\frac{1}{2}}(\cosh\eta) P_{n-1 / 2}(\cosh\eta)
\biggr]
\biggr\}
</math>
  </td>
</tr>
</table>
Drawing on the identified "Key Equation" expression,
{{ User:Tohline/Math/EQ_Toroidal06 }}
and adopting the associations, <math>~z = \xi = \cosh\eta</math> and <math>~\ell \rightarrow (n-\tfrac{1}{2})</math>, we recognize that,
<table border="0" cellpadding="5" align="center">
<tr>
  <td align="right">
<math>~(n+\tfrac{1}{2})[P_{n+\frac{1}{2}}(\cosh\eta) Q_{n-\frac{1}{2}} (\cosh\eta) - P_{n-\frac{1}{2}}(\cosh\eta)Q_{n+\frac{1}{2}}(\cosh\eta)] </math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
1 \, .
</math>
  </td>
</tr>
</table>
Hence, we can write,
<table border="1" align="center" cellpadding="8">
<tr><td align="center">Interior Solution: &nbsp;<math>~\eta \ge \eta_0 </math></td></tr>
<tr><td align="left">
<table border="0" cellpadding="5" align="center">
<tr>
  <td align="right">
<math>~\Phi_\mathrm{W}(\eta,\theta)</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
-  \frac{2\sqrt{2}~ GM}{3\pi^2 a}  \biggl[ \frac{\sinh^3\eta_0}{ \cosh{\eta_0}} \biggr] (\cosh\eta - \cos\theta)^{1 / 2}
\sum\limits^\infty_{n=0} \epsilon_n \cos(n\theta)
</math>
  </td>
</tr>
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
&nbsp;
  </td>
  <td align="left">
<math>~
\times \biggl\{ 
Q_{n-1 / 2}(\cosh\eta)
\biggl[
(n+\tfrac{1}{2})P_{n+\frac{1}{2}}(\cosh{\eta_0}) Q_{n - \frac{1}{2}}^2(\cosh{\eta_0})
- (n - \tfrac{3}{2}) ~ P_{n - \frac{1}{2}}(\cosh{\eta_0})~Q^2_{n + \frac{1}{2}}(\cosh{\eta_0})
\biggr] - Q_{n - \frac{1}{2}}^2(\cosh\eta) \biggr\} \, .
</math>
  </td>
</tr>
</table>
</td></tr>
</table>
This expression matches the potential for the ''interior region'' that is obtained by combining [http://adsabs.harvard.edu/abs/1973AnPhy..77..279W Wong's (1973)] Eqs. (2.59), (2.60) and (2.62).  Finally, drawing on yet another identified "Key Equation," namely,
{{ User:Tohline/Math/EQ_Toroidal08 }}
[[File:CommentButton02.png|right|100px|Comment by J. E. Tohline on 2 July 2018:  Note that this matches [http://adsabs.harvard.edu/abs/1973AnPhy..77..279W Wong's (1973)] Eq. (2.64), except that the numerator on the right-hand side of his equation contains  the hyperbolic sine function raised to the first power whereas in our expression it is squared.  We are confident that it should be squared, in part, because the term ''is'' squared when it reappears in Wong's Eq. (2.65).]]and adopting the associations, <math>~\mu \rightarrow 2</math>, <math>~\nu \rightarrow \theta</math>, and <math>~z \rightarrow \cosh\eta</math>, we see that,
<table border="0" cellpadding="5" align="center">
<tr>
  <td align="right">
<math>~
\sum_{n=0}^\infty \epsilon_n  \cos(n\theta) ~Q^2_{n-\frac{1}{2}}(\cosh\eta)
</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
(-1)^2~\biggl(\frac{\pi}{2} \biggr)^{1 / 2} \Gamma(2 + \tfrac{1}{2})\biggl[ \frac{ \sinh^2\eta }{(\cosh\eta - \cos\theta)^{\frac{5}{2}}} \biggr]
</math>
  </td>
</tr>
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
\biggl(\frac{\pi}{2} \biggr)^{1 / 2} \biggl[ \frac{4! \sqrt{\pi}}{ 4^2 \cdot 2! } \biggr] \biggl[ \frac{ \sinh^2\eta }{(\cosh\eta - \cos\theta)^{\frac{5}{2}} } \biggr]
</math>
  </td>
</tr>
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
\biggl(\frac{1}{2} \biggr)^{1 / 2} \biggl[ \frac{ 3\pi}{ 2^2} \biggr] \biggl[ \frac{ \sinh^2\eta }{(\cosh\eta - \cos\theta)^{\frac{5}{2}} } \biggr] \, .
</math>
  </td>
</tr>
<tr>
  <td align="center" colspan="3">
[http://adsabs.harvard.edu/abs/1973AnPhy..77..279W Wong (1973)], Eq. (2.64)<br />except, see accompanying (pink, scroll-over balloon) COMMENT
  </td>
</tr>
</table>
[[File:CommentButton02.png|right|100px|Comment by J. E. Tohline on 2 July 2018:  Note that this matches [http://adsabs.harvard.edu/abs/1973AnPhy..77..279W Wong's (1973)] Eq. (2.65), except that in his expression the first term inside the curly braces on the right-hand side contains an extra factor of &pi;.  We are confident that our derived expression is correct because it is consistent with the immediately preceding expression &#8212; labeled Eq. (2.64) in [http://adsabs.harvard.edu/abs/1973AnPhy..77..279W Wong (1973)].]]Hence, the ''interior solution'' can be rewritten as,
<table border="0" cellpadding="5" align="center">
<tr>
  <td align="right">
<math>~\Phi_\mathrm{W}(\eta,\theta)\bigr|_\mathrm{interior}</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~ \frac{ GM}{2\pi a}  \biggl[ \frac{\sinh^3\eta_0}{ \cosh{\eta_0}} \biggr] \biggl\{ \biggl[ \frac{ \sinh\eta }{(\cosh\eta - \cos\theta) } \biggr]^2
~ -  ~ \frac{2^2\sqrt{2}~ }{3\pi}  (\cosh\eta - \cos\theta)^{1 / 2}
\sum\limits^\infty_{n=0} \epsilon_n \cos(n\theta) \, .
</math>
  </td>
</tr>
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
&nbsp;
  </td>
  <td align="left">
<math>~
\times
Q_{n-1 / 2}(\cosh\eta)
\biggl[
(n+\tfrac{1}{2})P_{n+\frac{1}{2}}(\cosh{\eta_0}) Q_{n - \frac{1}{2}}^2(\cosh{\eta_0})
- (n - \tfrac{3}{2}) ~ P_{n - \frac{1}{2}}(\cosh{\eta_0})~Q^2_{n + \frac{1}{2}}(\cosh{\eta_0})
\biggr] \biggr\} \, .
</math>
  </td>
</tr>
<tr>
  <td align="center" colspan="3">
[http://adsabs.harvard.edu/abs/1973AnPhy..77..279W Wong (1973)], Eq. (2.65)<br />except, see accompanying (pink, scroll-over balloon) COMMENT
  </td>
</tr>
</table>
=Appendix: Selected Toroidal Function Relationships=
Here, we draw from the set of toroidal function relationships that have been identified as "Key Equations" in our [[User:Tohline/Appendix/Equation_templates#Torus|accompanying ''Equations'' appendix]].
==A.1==
<table border="0" align="center" cellpadding="10" width="90%">
<tr>
  <td align="left">
Beginning with the identified "Key Equation",
{{ User:Tohline/Math/EQ_Toroidal02 }}
we'll identify  <math>~x</math> with <math>~\cosh\eta</math> &#8212; in which case we have <math>~\lambda = \coth\eta</math> &#8212; and switch the index notations, <math>~n \leftrightarrow m</math>.  This gives,
<table border="0" cellpadding="5" align="center">
<tr>
  <td align="right">
<math>~Q_{m-1 / 2}^n (\coth\eta)</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~(-1)^m
\frac{\pi^{3/2}}{\sqrt{2} ~\Gamma(m-n+\frac{1}{2})} (\sinh\eta)^{1 / 2} P_{n-1 / 2}^m(\cosh\eta) \, .
</math>
  </td>
</tr>
</table>
Drawing upon the ''Euler reflection formula for gamma functions'', namely,
{{ User:Tohline/Math/EQ_Gamma01 }}
where it is understood that <math>~m</math> and <math>~n</math> are each either zero or a positive integer, this toroidal-function relation becomes,
<table border="0" cellpadding="5" align="center">
<tr>
  <td align="right">
<math>~Q_{m-1 / 2}^n (\coth\eta)</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~(-1)^m~
\frac{\pi^{3/2}}{\sqrt{2} } \biggl[ \frac{ \Gamma(n - m +\frac{1}{2}) }{ \pi (-1)^{m-n} } \biggr] (\sinh\eta)^{1 / 2} P_{n-1 / 2}^m(\cosh\eta)
</math>
  </td>
  <td align="right" width="15%">
&nbsp;
  </td>
</tr>
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
(-1)^n \sqrt{ \frac{\pi}{2} } ~\Gamma(n - m + \tfrac{1}{2} )(\sinh\eta)^{1 / 2} P_{n-1 / 2}^m(\cosh\eta) \, .
</math>
  </td>
  <td align="right" width="15%">
<font color="green" size="+3">&#x2460;</font>
  </td>
</tr>
</table>
  </td>
</tr>
</table>
==A.2==
<table border="0" align="center" cellpadding="10" width="90%">
<tr>
  <td align="left">
Again, beginning with the identified "Key Equation",
{{ User:Tohline/Math/EQ_Toroidal02 }}
this time, without switching index notations, we'll identify  <math>~x</math> with <math>~\coth\eta</math> &#8212; in which case we have <math>~\lambda = \cosh\eta</math>.  This gives,
<table border="0" cellpadding="5" align="center">
<tr>
  <td align="right">
<math>~Q_{n-1 / 2}^m (\cosh\eta)</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~(-1)^n
\frac{\pi^{3/2}}{\sqrt{2} ~\Gamma(n-m+\frac{1}{2})} \biggl( \frac{1}{\sinh\eta} \biggr)^{1 / 2} P_{m-1 / 2}^n(\coth\eta) \, .
</math>
  </td>
</tr>
</table>
Drawing upon the same ''Euler reflection formula for gamma functions'', as quoted above, this toroidal function relation can be rewritten as,
<table border="0" cellpadding="5" align="center">
<tr>
  <td align="right">
<math>~Q_{n-1 / 2}^m (\cosh\eta)</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~(-1)^n
\frac{\pi^{3/2}}{\sqrt{2} } \biggl[ \frac{\Gamma(m-n+\frac{1}{2})}{\pi (-1)^{m-n}} \biggr] \biggl( \frac{1}{\sinh\eta} \biggr)^{1 / 2} P_{m-1 / 2}^n(\coth\eta)
</math>
  </td>
</tr>
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~(-1)^{-m}~
\sqrt{\frac{\pi}{2}} \biggl[ \frac{\Gamma(m-n+\frac{1}{2})}{\sqrt{\sinh\eta}} \biggr]  P_{m-1 / 2}^n(\coth\eta) \, .
</math>
  </td>
</tr>
</table>
Finally, calling upon the "Key Equation" relation,
{{ User:Tohline/Math/EQ_Toroidal00 }}
making the index notation substitution, <math>~\nu \rightarrow (m-\tfrac{1}{2})</math>, and associating <math>~z</math> with <math>~ \coth\eta</math> gives,
<table border="0" cellpadding="5" align="center">
<tr>
  <td align="right">
<math>~P^n_{m-\frac{1}{2}}(\coth\eta)</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~\biggl[ \frac{\Gamma(m+n+\frac{1}{2})}{\Gamma(m-n+\frac{1}{2})} \biggr]P^{-n}_{m-\frac{1}{2}}(\coth\eta)  \, .</math>
  </td>
</tr>
</table>
As a result, we can write,
<table border="0" cellpadding="5" align="center">
<tr>
  <td align="right">
<math>~Q_{n-1 / 2}^m (\cosh\eta)</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~(-1)^{-m}~
\sqrt{\frac{\pi}{2}} \biggl[ \frac{\Gamma(m+n+\frac{1}{2})}{\sqrt{\sinh\eta}} \biggr]  P_{m-1 / 2}^{-n}(\coth\eta)
</math>
  </td>
  <td align="right" width="15%">
&nbsp;
  </td>
</tr>
<tr>
  <td align="right">
<math>~\Rightarrow ~~~
P_{m-1 / 2}^{-n}(\coth\eta)
</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~(-1)^m~\sqrt{\frac{2}{\pi}} \biggl[ \frac{\sqrt{\sinh\eta}}{\Gamma(m+n+\frac{1}{2})} \biggr] 
Q_{n-1 / 2}^m (\cosh\eta) \, .
</math>
  </td>
  <td align="right" width="15%">
<font color="green" size="+3">&#x2461;</font>
  </td>
</tr>
</table>
  </td>
</tr>
</table>
==A.3==
<table border="0" align="center" cellpadding="10" width="90%">
<tr>
  <td align="left">
Here, our objective is to evaluate the definite integral,
<div align="center">
<table border="0" cellpadding="5" align="center">
<tr>
  <td align="right">
<math>~\int_{-\pi}^{\pi} \frac{\cos[n(\theta - \theta^')] d\theta}{(\cosh\eta - \cos\theta)^{5 / 2}} </math>
  </td>
  <td align="right">
<math>~=</math>
  </td>
  <td align="left">
<math>~
\cos(n\theta^') \int_{-\pi}^{\pi} \frac{ \cos(n\theta) ~ d\theta}{(\cosh\eta - \cos\theta)^{5 / 2}}
+ \sin(n\theta^') \cancelto{0}{ \int_{-\pi}^{\pi} \frac{ \sin(n\theta)  d\theta}{(\cosh\eta - \cos\theta)^{5 / 2}} }
</math>
  </td>
</tr>
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="right">
<math>~=</math>
  </td>
  <td align="left">
<math>~
2 \cos(n\theta^') \int_{0}^{\pi} \frac{ \cos(n\theta)~ d\theta}{(\cosh\eta - \cos\theta)^{5 / 2}} \, .
</math>
  </td>
</tr>
</table>
</div>
Notice that, since the limits of the integration are <math>~-\pi</math> to <math>~+\pi</math>: &nbsp; The second integral on the right-hand-side goes to zero because the numerator of its integrand &#8212; ''i.e.,'' <math>~\sin(n\theta)</math> &#8212; is an [https://en.wikipedia.org/wiki/Even_and_odd_functions#Odd_functions odd function]; and, with regard to the first integral on the right-hand-side, the lower integration limit can be set to zero and the result doubled because the numerator of its integrand &#8212; ''i.e.,'' <math>~\cos(n\theta)</math> &#8212; is an [https://en.wikipedia.org/wiki/Even_and_odd_functions#Even_functions even function].
Drawing from Volume I of [https://authors.library.caltech.edu/43491/1/Volume%201.pdf A. Erd&eacute;lyi's (1953)] ''Higher Transcendental Functions,'' we find the following "Key Equation":
{{ User:Tohline/Math/EQ_Toroidal03 }}
Next we adopt the associations, <math>~z \rightarrow \cosh\eta</math>, <math>~t \rightarrow \theta</math>, <math>~\mu \rightarrow 2</math>, and, <math>~\nu \rightarrow n - \tfrac{1}{2}</math>, where <math>~n</math> is zero or a positive integer.  In this case we have,
<table border="0" cellpadding="5" align="center">
<tr>
  <td align="right">
<math>~Q_{n - \frac{1}{2}}^2 (\cosh\eta)</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
(2\pi)^{-\frac{1}{2}} (\cosh^2\eta-1) ~\Gamma(\tfrac{5}{2})~\biggl\{
\int_0^\pi (\cosh\eta - \cos \theta)^{-\frac{5}{2}} \cos(n\theta) ~d\theta
- \cancelto{0}{\cos[(n-\tfrac{1}{2})\pi] }~~\int_0^\infty (\cosh\eta + \cosh \theta)^{- \frac{5}{2}} e^{-n\theta} ~d\theta
\biggr\} \, ,
</math>
  </td>
</tr>
</table>
where the prefactor of the second term &#8212; that is, <math>~\cos[(n-\tfrac{1}{2})\pi] </math> &#8212; goes to zero for all allowable values of the integer, <math>~n</math>.  Hence, we conclude that,
<table border="0" cellpadding="5" align="center">
<tr>
  <td align="right">
<math>~2\cos(n\theta^')
\int_0^\pi \frac{ \cos(n\theta)~d\theta }{ (\cosh\eta - \cos \theta)^{\frac{5}{2}} }
</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left" colspan="2">
<math>~\frac{ 2(2\pi)^{\frac{1}{2}} Q_{n - \frac{1}{2}}^2 (\cosh\eta) \cos(n\theta^')}{ (\cosh^2\eta-1) ~\Gamma(\tfrac{5}{2})~ }
</math>
  </td>
</tr>
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~\biggl[ \frac{ 2^3 \sqrt{2} }{ 3 } \biggr] \frac{  Q_{n - \frac{1}{2}}^2(\cosh\eta) \cos(n\theta^')}{ \sinh^2\eta  }
\, .
</math>
  </td>
  <td align="right" width="15%">
<font color="green" size="+3">&#x2462;</font>
  </td>
</tr>
</table>
where we have set,
<div align="center">
<math>~
\Gamma(\tfrac{5}{2}) = \Gamma(\tfrac{1}{2} + 2) = \frac{ \sqrt{\pi} \cdot 4! }{4^2 \cdot 2!}
= \frac{\sqrt{\pi} \cdot 2^3\cdot 3}{  2^5 } = \frac{3 \sqrt{\pi}}{2^2} \, .
</math>
</div>
  </td>
</tr>
</table>
==A.4==
<table border="0" align="center" cellpadding="10" width="90%">
<tr>
  <td align="left">
Beginning with the identified "Key Equation",
{{ User:Tohline/Math/EQ_Toroidal05 }}
we will adopt the associations: &nbsp; <math>~z \rightarrow t</math>, <math>~\mu \rightarrow 2</math>, <math>~\nu \rightarrow (n - \tfrac{1}{2})</math>, <math>~\rho \rightarrow 0</math>, and <math>~\sigma \rightarrow ( n - \tfrac{1}{2})</math>.  As a result, [https://authors.library.caltech.edu/43491/1/Volume%201.pdf Erd&eacute;lyi's (1953)] expression becomes,
<table border="0" cellpadding="5" align="center">
<tr>
  <td align="right">
<math>~
\int_a^b\biggl[ -4(1 - t^2)^{-1} \biggr] Q_{n - \frac{1}{2}}^2(t) ~X_{n - \frac{1}{2}}(t) ~dt
</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
\biggl[
(n - \tfrac{1}{2} ) Q_{n - \frac{1}{2}}^2(t) ~ X_{n - \frac{3}{2}}(t) - (n + \tfrac{3}{2}) Q_{n - \frac{3}{2}}^2(t) ~X_{n - \frac{1}{2}}(t)
\biggr]_a^b \, .
</math>
  </td>
</tr>
</table>
Drawing upon the ''recurrence'' "Key Equation,"
{{ User:Tohline/Math/EQ_Toroidal04 }}
which means, after making the associations, <math>~z \rightarrow t</math>, <math>~\mu \rightarrow 0</math> and <math>~\nu \rightarrow (n-\tfrac{1}{2})</math>, that,
<table border="0" cellpadding="5" align="center">
<tr>
  <td align="right">
<math>~(n+\tfrac{1}{2})X_{n+\frac{1}{2}}(t)</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~2n t X_{n-\frac{1}{2}}(t) - (n-\tfrac{1}{2})X_{n - \frac{3}{2}}(t)</math>
  </td>
</tr>
<tr>
  <td align="right">
<math>~\Rightarrow ~~~(n-\tfrac{1}{2})X_{n - \frac{3}{2}}(t) </math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~2n t X_{n-\frac{1}{2}}(t) - (n+\tfrac{1}{2})X_{n+\frac{1}{2}}(t)</math>
  </td>
</tr>
</table>
the integral can be rewritten as,
<table border="0" cellpadding="5" align="center">
<tr>
  <td align="right">
<math>~
\int_a^b\biggl[  \frac{Q_{n - \frac{1}{2}}^2(t) ~X_{n - \frac{1}{2}}(t) }{(t^2-1)}\biggr]~dt
</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
\frac{1}{4} \biggl\{
\biggl[ 2n t X_{n-\frac{1}{2}}(t) - (n+\tfrac{1}{2})X_{n+\frac{1}{2}}(t) \biggr]  Q_{n - \frac{1}{2}}^2(t) - (n + \tfrac{3}{2}) Q_{n - \frac{3}{2}}^2(t) ~X_{n - \frac{1}{2}}(t)
\biggr\}_a^b
</math>
  </td>
</tr>
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
\frac{1}{4} \biggl\{
\biggl[ 2n t  Q_{n - \frac{1}{2}}^2(t)
- (n + \tfrac{3}{2}) Q_{n - \frac{3}{2}}^2(t) \biggr] X_{n - \frac{1}{2}}(t)
-  (n+\tfrac{1}{2})X_{n+\frac{1}{2}}(t) Q_{n - \frac{1}{2}}^2(t)
\biggr\}_a^b \, .
</math>
  </td>
</tr>
</table>
Returning to the same ''recurrence'' "Key Equation," but this time adopting the associations, <math>~z \rightarrow t</math>, <math>~\mu \rightarrow 2</math> and <math>~\nu \rightarrow (n-\tfrac{1}{2})</math>, we can write,
<table border="0" cellpadding="5" align="center">
<tr>
  <td align="right">
<math>~(n - \tfrac{3}{2})Q^2_{n + \frac{1}{2}}(t)</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
2n t Q^2_{n - \frac{1}{2}}(t) - (n + \tfrac{3}{2}) Q^2_{n - \frac{3}{2}} (t) \, ,
</math>
  </td>
</tr>
</table>
in which case the integral becomes,
<table border="0" cellpadding="5" align="center">
<tr>
  <td align="right">
<math>~
\int_a^b\biggl[  \frac{Q_{n - \frac{1}{2}}^2(t) ~X_{n - \frac{1}{2}}(t) }{(t^2-1)}\biggr]~dt
</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
\frac{1}{4} \biggl\{
(n - \tfrac{3}{2})Q^2_{n + \frac{1}{2}}(t) ~ X_{n - \frac{1}{2}}(t)
-  (n+\tfrac{1}{2})X_{n+\frac{1}{2}}(t) Q_{n - \frac{1}{2}}^2(t)
\biggr\}_a^b \, .
</math>
  </td>
  <td align="right" width="15%">
<font color="green" size="+3">&#x2463;</font>
  </td>
</tr>
</table>
</td>
</tr>
</table>





Revision as of 16:12, 18 July 2018

Wong's (1973) Analytic Potential

NOTE:   An earlier version of this chapter has been shifted to our "Ramblings" Appendix.

Whitworth's (1981) Isothermal Free-Energy Surface
|   Tiled Menu   |   Tables of Content   |  Banner Video   |  Tohline Home Page   |

Uniform-Density Torus

From an accompanying review, we see that for a torus of major radius <math>~R</math> and minor radius <math>~d</math>, the most accommodating (cylindrical-coordinate-based) radial coordinate location of the toroidal coordinate system's anchor ring, <math>~a</math>, is defined such that,

<math>~a^2</math>

<math>~\equiv</math>

<math>~R^2 - d^2 \, .</math>

Wong (1973), Eq. (2.8)

Then the corresponding (toroidal-coordinate-based) radial coordinate location <math>~\eta_0</math> of the surface of the torus is,

<math>~\eta_0</math>

<math>~=</math>

<math>~\cosh^{-1}\biggl(\frac{R}{d}\biggr) \, .</math>

Wong (1973), Eq. (2.9)

Alternatively, given <math>~\eta_0</math> and the value of the parameter <math>~a</math>, we have,

<math>~R</math>

<math>~=</math>

<math>~a \coth\eta_0 \, ,</math>

<math>~d</math>

<math>~=</math>

<math>~\frac{a}{\sinh\eta_0} \, .</math>

Wong (1973), Eqs. (2.10) & (2.11)

If such an axisymmetric torus has a uniform density, <math>~\rho_0</math>, then according to the Cohl & Tohline (1999) expression, the gravitational potential is,

<math>~\Phi_\mathrm{CT}(\eta,\theta)</math>

<math>~=</math>

<math>~ - 2G\rho_0 a^2 \biggl[ \frac{(\cosh\eta - \cos\theta)}{\sinh\eta } \biggr]^{1 / 2} \int_{\eta_0}^\infty d\eta^' \int_{-\pi}^\pi d\theta^' \biggl[ \frac{\sinh\eta^'}{(\cosh\eta^' - \cos\theta^')^5} \biggr]^{1 / 2} Q_{- 1 / 2}(\Chi) \, . </math>

In contrast, according to Wong's (1973) expression, the gravitational potential is,

<math>~\Phi_\mathrm{W}(\eta,\theta)</math>

<math>~=</math>

<math>~ - 2G \rho_0 a^2 (\cosh\eta - \cos\theta)^{1 / 2} \sum\limits^\infty_{n=0} \epsilon_n \int_{\eta_0}^\infty d\eta^' ~\sinh\eta^'~P_{n-1 / 2}(\cosh\eta_<) ~Q_{n-1 / 2}(\cosh\eta_>) \int_{-\pi}^\pi \frac{ \cos[n(\theta - \theta^')] d\theta^' }{(\cosh\eta^' - \cos\theta^')^{5/2}} \, . </math>

Wong (1973), p. 293, Eq. (2.55)

Which Is Easier to Evaluate?

Upon evaluation, the expressions for <math>~\Phi_\mathrm{CT}</math> and for <math>~\Phi_\mathrm{W}</math> should give identical values for the gravitational potential at all coordinate locations <math>~(\eta,\theta)</math> across the entire meridional plane. But which of the two expressions is easier to evaluate?

CT

If the desire is to perform the evaluation numerically, then the <math>~\Phi_\mathrm{CT}</math> expression is almost certainly easier to contend with. It only requires a double integration; and as has been detailed in an accompanying discussion, the only relatively unfamiliar special function that appears in the integrand, <math>~Q_{-\frac{1}{2}}(\Chi)</math>, can be re-expressed in terms of (the more familiar) complete elliptic integral of the first kind, namely,

<math>~Q_{-\frac{1}{2}}(\Chi)</math>

<math>~=</math>

<math>~ \mu K(\mu) \, , </math>

where,

<math>~\mu</math>

<math>~\equiv</math>

<math>~\biggl[ \frac{2}{\Chi + 1} \biggr]^{1 / 2}</math>

<math>~=</math>

<math>~\biggl[ \frac{2 \sinh\eta \cdot \sinh\eta^' }{ \cosh(\eta^' + \eta) - \cos(\theta^' - \theta) } \biggr]^{1 / 2} \, .</math>

The task is daunting, however, if the desire is to evaluate the expression for <math>~\Phi_\mathrm{CT}</math> analytically. To our knowledge, no one has yet been able to start from the expression as presented here for <math>~\Phi_\mathrm{CT}</math> and complete the integral over the angular coordinate, <math>~\theta^'</math>, analytically, let alone analytically evaluate the second, radial integral. This is principally because the integrand of the first (angular) integral contains a nontrivial function multiplied by a special function whose argument is, itself, a nontrivial function of both <math>~\theta^'</math> and <math>~\eta^'</math>.

W

At first glance, the expression for <math>~\Phi_\mathrm{W}</math> is much more complex than the expression for <math>~\Phi_\mathrm{CT}</math>. It not only requires a double integration, but also an infinite-series summation over the integer index, <math>~n</math>; and the radial integrand contains a product of two (relatively unfamiliar) associated Legendre functions of various half-integer orders (toroidal functions). Developing a numerical algorithm to evaluate <math>~\Phi_\mathrm{W}</math> to a certain accuracy — presumably set by the number of terms included in the summation over <math>~n</math> — would certainly be a more challenging task than developing a numerical algorithm to evaluate <math>~\Phi_\mathrm{CT}</math>.

Analytic Integration Over the Angular Coordinate

However, focusing only on the integration over the angular coordinate, we see that the integrand in the expression for <math>~\Phi_\mathrm{W}</math> is significantly less imposing than the one that appears in the expression for <math>~\Phi_\mathrm{CT}</math>. Wong (1973) was able to evaluate this definite integral in closed form, analytically. While Wong does not record the detailed steps that he used to evaluate this definite integral, he does indicate that he received guidance from Volume I of A. Erdélyi's (1953) Higher Transcendental Functions. We therefore presume that he adopted the line of reasoning that we have detailed in the Appendix, below, in deriving the expression labeled . Wong recognized, what we have explicitly demonstrated, namely,

<math>~\int_{-\pi}^\pi d\theta^' (\cosh\eta^' - \cos\theta^')^{- 5 / 2} \cos[n(\theta - \theta^')]</math>

<math>~=</math>

<math>~2\cos(n\theta) \int_0^\pi \frac{ \cos(n\theta^')~d\theta^' }{ (\cosh\eta^' - \cos \theta^')^{\frac{5}{2}} } </math>

<math>~=</math>

<math>~ \frac{8\sqrt{2}}{3} \biggl[ \frac{\cos(n\theta)}{\sinh^2\eta^'} \biggr] Q^2_{n- \frac{1}{2}} (\cosh\eta^') \,. </math>

Wong (1973), p. 293, Eq. (2.56)

CAUTION:  It is important to appreciate that, in this expression as well as in the expressions to follow, the term, <math>~Q^2_{n-\frac{1}{2}}(z)</math>, is not the square of the zero-order toroidal function, <math>~Q^0_{n - \frac{1}{2}}(z)</math>, but is instead the toroidal function of order two. In an accompanying discussion we present an analytic expression for <math>~Q^2_{-\frac{1}{2}}(z)</math> — and a separate analytic expression for <math>~Q^1_{-\frac{1}{2}}(z)</math> — in terms of complete elliptic integrals, as well as a recurrence relation that can be used to generate analytic expressions for all other order-two (and all other order-one) toroidal functions that have higher half-integer degrees, <math>~n-\tfrac{1}{2}</math> for <math>~n \ge 1</math>.


Hence, Wong was able to simplify the expression for <math>~\Phi_\mathrm{W}</math> to one that — albeit, in addition to an infinite summation over the index, <math>~n</math> — only requires integration over the radial coordinate, <math>~\eta^'</math>. Specifically, he obtained,

<math>~\Phi_\mathrm{W}(\eta,\theta)</math>

<math>~=</math>

<math>~ - 2G \rho_0 a^2 (\cosh\eta - \cos\theta)^{1 / 2} \sum\limits^\infty_{n=0} \epsilon_n \int_{\eta_0}^\infty d\eta^' ~\sinh\eta^'~P_{n-1 / 2}(\cosh\eta_<) ~Q_{n-1 / 2}(\cosh\eta_>)\biggl\{ \frac{8\sqrt{2}}{3} \biggl[ \frac{\cos(n\theta)}{\sinh^2\eta^'} \biggr] Q^2_{n- \frac{1}{2}} (\cosh\eta^') \biggr\} </math>

 

<math>~=</math>

<math>~ - \biggl( \frac{16\sqrt{2}}{3} \biggr) G \rho_0 a^2 (\cosh\eta - \cos\theta)^{1 / 2} \sum\limits^\infty_{n=0} \epsilon_n \cos(n\theta) \int_{\eta_0}^\infty d\eta^' \Biggl[ \frac{Q^2_{n- \frac{1}{2}} (\cosh\eta^')}{\sinh\eta^'} \Biggr] ~P_{n-1 / 2}(\cosh\eta_<) ~Q_{n-1 / 2}(\cosh\eta_>) \, . </math>

Wong (1973), p. 294, Eq. (2.57)

Analytic Integration Over the Radial Coordinate

Now, in considering how to handle integration over the radial coordinate, <math>~\eta^'</math>, let's examine, first, the case where <math>~\eta^' \ge \eta_0 > \eta</math>, that is, the potential is being evaluated at a location that is entirely outside of the torus. In this case,

<math>~\Phi_\mathrm{W}(\eta,\theta)</math>

<math>~=</math>

<math>~ - \biggl( \frac{16\sqrt{2}}{3} \biggr) G \rho_0 a^2 (\cosh\eta - \cos\theta)^{1 / 2} \sum\limits^\infty_{n=0} \epsilon_n \cos(n\theta) ~P_{n-1 / 2}(\cosh\eta) \int_{\eta_0}^\infty d\eta^' \Biggl[ \frac{Q^2_{n- \frac{1}{2}} (\cosh\eta^')}{\sinh\eta^'} \Biggr] ~Q_{n-1 / 2}(\cosh\eta^') \, . </math>

So we are interested in carrying out the "radial" integral,

<math>~ \int_{\eta_0}^\infty d\eta^' \sinh\eta^' \Biggl[ \frac{Q^2_{n- \frac{1}{2}} (\cosh\eta^')}{\sinh^2\eta^'} \Biggr] ~Q_{n-1 / 2}(\cosh\eta^') </math>

<math>~=</math>

<math>~ \int_{\cosh(\eta_0)}^{\cosh(\infty)} dt \Biggl[ \frac{Q^2_{n- \frac{1}{2}} (t)~Q_{n-\frac{1}{2}}(t)}{t^2 - 1} \Biggr] \, , </math>

where we have made the association, <math>~\cosh\eta^' \rightarrow t</math>, in which case, <math>~dt = \sinh\eta^' d\eta^'</math>. Following the line of reasoning that we have detailed in the Appendix, below, in deriving the expression labeled , this integral can be evaluated in closed form to give,

<math>~ \int_a^b\biggl[ \frac{Q_{n - \frac{1}{2}}^2(t) ~Q_{n - \frac{1}{2}}(t) }{(t^2-1)}\biggr]~dt </math>

<math>~=</math>

<math>~ \frac{1}{4} \biggl[ (n - \tfrac{3}{2})Q^2_{n + \frac{1}{2}}(t) ~ Q_{n - \frac{1}{2}}(t) - (n+\tfrac{1}{2})Q_{n+\frac{1}{2}}(t) Q_{n - \frac{1}{2}}^2(t) \biggr]_a^b \, . </math>

Wong (1973), Eq. (2.58)

Hence, we have,

<math>~\Phi_\mathrm{W}(\eta,\theta)</math>

<math>~=</math>

<math>~ - \biggl( \frac{4\sqrt{2}}{3} \biggr) G \rho_0 a^2 (\cosh\eta - \cos\theta)^{1 / 2} \sum\limits^\infty_{n=0} \epsilon_n \cos(n\theta) </math>

 

 

<math>~ \times P_{n-1 / 2}(\cosh\eta) \biggl[ (n - \tfrac{3}{2})Q^2_{n + \frac{1}{2}}(t) ~ Q_{n - \frac{1}{2}}(t) - (n+\tfrac{1}{2})Q_{n+\frac{1}{2}}(t) Q_{n - \frac{1}{2}}^2(t) \biggr]_{t = \cosh \eta_0}^{t = \cosh\infty} \, . </math>

Or, given that, in this uniform-density configuration, the density is exactly the mass divided by the torus volume, that is,

<math>~\rho_0 = \frac{M}{V}</math>

<math>~=</math>

<math>~\frac{M \sinh^3\eta_0}{2\pi^2 a^3 \cosh{\eta_0}} \, ,</math>

we have,

<math>~\Phi_\mathrm{W}(\eta,\theta)</math>

<math>~=</math>

<math>~ - \frac{2\sqrt{2}~ GM}{3\pi^2 a} \biggl[ \frac{\sinh^3\eta_0}{ \cosh{\eta_0}} \biggr] (\cosh\eta - \cos\theta)^{1 / 2} \sum\limits^\infty_{n=0} \epsilon_n \cos(n\theta) </math>

 

 

<math>~ \times P_{n-1 / 2}(\cosh\eta) \biggl[ (n - \tfrac{3}{2})Q^2_{n + \frac{1}{2}}(t) ~ Q_{n - \frac{1}{2}}(t) - (n+\tfrac{1}{2})Q_{n+\frac{1}{2}}(t) Q_{n - \frac{1}{2}}^2(t) \biggr]_{t = \cosh \eta_0}^{t = \cosh\infty} \, . </math>

In a separate chapter, we have examined the asymptotic behavior of the toroidal functions, <math>~Q_{n-\tfrac{1}{2}}(t)</math>, which is,

<math>~\lim_{\chi\rightarrow \infty} Q_{n-\frac{1}{2}}(t)</math>

<math>~\propto</math>

<math>~ \frac{1}{t^{n+\frac{1}{2}} } \, . </math>

This means that, at the upper integration limit, these toroidal functions go to zero. As a result, we can write,

Exterior Solution:  <math>~\eta_0 \ge \eta</math>

<math>~\Phi_\mathrm{W}(\eta,\theta)</math>

<math>~=</math>

<math>~ - \frac{2\sqrt{2}~ GM}{3\pi^2 a} \biggl[ \frac{\sinh^3\eta_0}{ \cosh{\eta_0}} \biggr] (\cosh\eta - \cos\theta)^{1 / 2} \sum\limits^\infty_{n=0} \epsilon_n \cos(n\theta) </math>

 

 

<math>~ \times P_{n-1 / 2}(\cosh\eta) \biggl[ (n+\tfrac{1}{2})Q_{n+\frac{1}{2}}(\cosh \eta_0) Q_{n - \frac{1}{2}}^2(\cosh \eta_0) - (n - \tfrac{3}{2})Q^2_{n + \frac{1}{2}}(\cosh \eta_0) ~ Q_{n - \frac{1}{2}}(\cosh \eta_0) \biggr] \, . </math>

This expression matches the potential for the exterior region that is obtained by combining Wong's (1973) Eqs. (2.59), (2.61) and (2.63).

Now, let's examine the potential evaluated at a radial location, <math>~\eta</math>, that is positioned inside the surface of the torus. That is, <math>~\eta_0 < \eta \le \infty</math>. We need to add expressions that have two different sets of integration limits as follows. First, over the subregion, <math>~\eta \le \eta^' \le \infty</math>, we use the same expression for <math>~\Phi_\mathrm{W}</math> but employ the new limits, as indicated; and second, over the subregion <math>~\eta_0 \le \eta^' \le \eta</math>, we swap the roles of <math>~P_{n-\frac{1}{2}}</math> and <math>~Q_{n-\frac{1}{2}}</math>.

<math>~\Phi_\mathrm{W}(\eta,\theta)</math>

<math>~=</math>

<math>~ \Phi_\mathrm{W}|_\mathrm{subregion1} + \Phi_\mathrm{W}|_\mathrm{subregion2} </math>

 

<math>~=</math>

<math>~ - \frac{2\sqrt{2}~ GM}{3\pi^2 a} \biggl[ \frac{\sinh^3\eta_0}{ \cosh{\eta_0}} \biggr] (\cosh\eta - \cos\theta)^{1 / 2} \sum\limits^\infty_{n=0} \epsilon_n \cos(n\theta) </math>

 

 

<math>~ \times P_{n-1 / 2}(\cosh\eta) \biggl[ (n - \tfrac{3}{2})Q^2_{n + \frac{1}{2}}(t) ~ Q_{n - \frac{1}{2}}(t) - (n+\tfrac{1}{2})Q_{n+\frac{1}{2}}(t) Q_{n - \frac{1}{2}}^2(t) \biggr]_{t = \cosh \eta}^{t = \cosh\infty} </math>

 

 

<math>~ - \frac{2\sqrt{2}~ GM}{3\pi^2 a} \biggl[ \frac{\sinh^3\eta_0}{ \cosh{\eta_0}} \biggr] (\cosh\eta - \cos\theta)^{1 / 2} \sum\limits^\infty_{n=0} \epsilon_n \cos(n\theta) </math>

 

 

<math>~ \times Q_{n-1 / 2}(\cosh\eta) \biggl[ (n - \tfrac{3}{2})Q^2_{n + \frac{1}{2}}(t) ~ P_{n - \frac{1}{2}}(t) - (n+\tfrac{1}{2})P_{n+\frac{1}{2}}(t) Q_{n - \frac{1}{2}}^2(t) \biggr]_{t = \cosh \eta_0}^{t = \cosh\eta} </math>

 

<math>~=</math>

<math>~ - \frac{2\sqrt{2}~ GM}{3\pi^2 a} \biggl[ \frac{\sinh^3\eta_0}{ \cosh{\eta_0}} \biggr] (\cosh\eta - \cos\theta)^{1 / 2} \sum\limits^\infty_{n=0} \epsilon_n \cos(n\theta) </math>

 

 

<math>~ \times \biggl\{ P_{n-1 / 2}(\cosh\eta) \biggl[ (n+\tfrac{1}{2})Q_{n+\frac{1}{2}}(\cosh\eta) Q_{n - \frac{1}{2}}^2(\cosh\eta) - (n - \tfrac{3}{2})Q^2_{n + \frac{1}{2}}(\cosh\eta) ~ Q_{n - \frac{1}{2}}(\cosh\eta) \biggr] </math>

 

 

<math>~ + Q_{n-1 / 2}(\cosh\eta) \biggl[ (n - \tfrac{3}{2})Q^2_{n + \frac{1}{2}}(\cosh\eta) ~ P_{n - \frac{1}{2}}(\cosh\eta) - (n+\tfrac{1}{2})P_{n+\frac{1}{2}}(\cosh\eta) Q_{n - \frac{1}{2}}^2(\cosh\eta) \biggr] </math>

 

 

<math>~ - Q_{n-1 / 2}(\cosh\eta) \biggl[ (n - \tfrac{3}{2})Q^2_{n + \frac{1}{2}}(\cosh{\eta_0}) ~ P_{n - \frac{1}{2}}(\cosh{\eta_0}) - (n+\tfrac{1}{2})P_{n+\frac{1}{2}}(\cosh{\eta_0}) Q_{n - \frac{1}{2}}^2(\cosh{\eta_0}) \biggr] \biggr\} </math>

 

<math>~=</math>

<math>~ - \frac{2\sqrt{2}~ GM}{3\pi^2 a} \biggl[ \frac{\sinh^3\eta_0}{ \cosh{\eta_0}} \biggr] (\cosh\eta - \cos\theta)^{1 / 2} \sum\limits^\infty_{n=0} \epsilon_n \cos(n\theta) </math>

 

 

<math>~ \times \biggl\{ P_{n-1 / 2}(\cosh\eta) \biggl[ (n+\tfrac{1}{2})Q_{n+\frac{1}{2}}(\cosh\eta) Q_{n - \frac{1}{2}}^2(\cosh\eta) \biggr] - Q_{n-1 / 2}(\cosh\eta) \biggl[ (n+\tfrac{1}{2})P_{n+\frac{1}{2}}(\cosh\eta) Q_{n - \frac{1}{2}}^2(\cosh\eta) \biggr] </math>

 

 

<math>~ - Q_{n-1 / 2}(\cosh\eta) \biggl[ (n - \tfrac{3}{2})Q^2_{n + \frac{1}{2}}(\cosh{\eta_0}) ~ P_{n - \frac{1}{2}}(\cosh{\eta_0}) - (n+\tfrac{1}{2})P_{n+\frac{1}{2}}(\cosh{\eta_0}) Q_{n - \frac{1}{2}}^2(\cosh{\eta_0}) \biggr] \biggr\} </math>

 

<math>~=</math>

<math>~ - \frac{2\sqrt{2}~ GM}{3\pi^2 a} \biggl[ \frac{\sinh^3\eta_0}{ \cosh{\eta_0}} \biggr] (\cosh\eta - \cos\theta)^{1 / 2} \sum\limits^\infty_{n=0} \epsilon_n \cos(n\theta) </math>

 

 

<math>~ \times \biggl\{ Q_{n-1 / 2}(\cosh\eta) \biggl[

(n+\tfrac{1}{2})P_{n+\frac{1}{2}}(\cosh{\eta_0}) Q_{n - \frac{1}{2}}^2(\cosh{\eta_0}) 

- (n - \tfrac{3}{2}) ~ P_{n - \frac{1}{2}}(\cosh{\eta_0})~Q^2_{n + \frac{1}{2}}(\cosh{\eta_0}) \biggr] </math>

 

 

<math>~ - (n+\tfrac{1}{2})Q_{n - \frac{1}{2}}^2(\cosh\eta) \biggl[ Q_{n-1 / 2}(\cosh\eta) P_{n+\frac{1}{2}}(\cosh\eta) - Q_{n+\frac{1}{2}}(\cosh\eta) P_{n-1 / 2}(\cosh\eta) \biggr] \biggr\} </math>

Drawing on the identified "Key Equation" expression,

LSU Key.png

<math>~(\xi - z)\sum_{m=0}^n (2m+1)P_m(z) Q_m(\xi)</math>

<math>~=</math>

<math>~ 1 - (\ell+1)[P_{\ell+1}(z) Q_\ell(\xi) - P_\ell(z)Q_{\ell+1}(\xi)] </math>

Abramowitz & Stegun (1995), p. 335, eq. (8.9.2)

and adopting the associations, <math>~z = \xi = \cosh\eta</math> and <math>~\ell \rightarrow (n-\tfrac{1}{2})</math>, we recognize that,

<math>~(n+\tfrac{1}{2})[P_{n+\frac{1}{2}}(\cosh\eta) Q_{n-\frac{1}{2}} (\cosh\eta) - P_{n-\frac{1}{2}}(\cosh\eta)Q_{n+\frac{1}{2}}(\cosh\eta)] </math>

<math>~=</math>

<math>~ 1 \, . </math>

Hence, we can write,

Interior Solution:  <math>~\eta \ge \eta_0 </math>

<math>~\Phi_\mathrm{W}(\eta,\theta)</math>

<math>~=</math>

<math>~ - \frac{2\sqrt{2}~ GM}{3\pi^2 a} \biggl[ \frac{\sinh^3\eta_0}{ \cosh{\eta_0}} \biggr] (\cosh\eta - \cos\theta)^{1 / 2} \sum\limits^\infty_{n=0} \epsilon_n \cos(n\theta) </math>

 

 

<math>~ \times \biggl\{ Q_{n-1 / 2}(\cosh\eta) \biggl[

(n+\tfrac{1}{2})P_{n+\frac{1}{2}}(\cosh{\eta_0}) Q_{n - \frac{1}{2}}^2(\cosh{\eta_0}) 

- (n - \tfrac{3}{2}) ~ P_{n - \frac{1}{2}}(\cosh{\eta_0})~Q^2_{n + \frac{1}{2}}(\cosh{\eta_0}) \biggr] - Q_{n - \frac{1}{2}}^2(\cosh\eta) \biggr\} \, . </math>


This expression matches the potential for the interior region that is obtained by combining Wong's (1973) Eqs. (2.59), (2.60) and (2.62). Finally, drawing on yet another identified "Key Equation," namely,

LSU Key.png

<math>~ Q_{-\frac{1}{2}}^\mu(z) + 2\sum_{n=1}^\infty Q^\mu_{n-\frac{1}{2}}(z) \cos(n\nu) </math>

<math>~=</math>

<math>~ e^{i\mu\pi}~\biggl(\frac{\pi}{2} \biggr)^{1 / 2} \Gamma(\mu + \tfrac{1}{2})\biggl[ \frac{(z^2-1)^{\mu/2}}{(z - \cos\nu)^{\mu + \frac{1}{2}}} \biggr] </math>

A. Erdélyi (1953):  Volume I, §3.10, p. 166, eq. (3)

Valid for:    

<math>~\mathrm{Re}~\mu > - \tfrac{1}{2}</math>

Comment by J. E. Tohline on 2 July 2018: Note that this matches Wong's (1973) Eq. (2.64), except that the numerator on the right-hand side of his equation contains the hyperbolic sine function raised to the first power whereas in our expression it is squared. We are confident that it should be squared, in part, because the term is squared when it reappears in Wong's Eq. (2.65).

and adopting the associations, <math>~\mu \rightarrow 2</math>, <math>~\nu \rightarrow \theta</math>, and <math>~z \rightarrow \cosh\eta</math>, we see that,

<math>~ \sum_{n=0}^\infty \epsilon_n \cos(n\theta) ~Q^2_{n-\frac{1}{2}}(\cosh\eta) </math>

<math>~=</math>

<math>~ (-1)^2~\biggl(\frac{\pi}{2} \biggr)^{1 / 2} \Gamma(2 + \tfrac{1}{2})\biggl[ \frac{ \sinh^2\eta }{(\cosh\eta - \cos\theta)^{\frac{5}{2}}} \biggr] </math>

 

<math>~=</math>

<math>~ \biggl(\frac{\pi}{2} \biggr)^{1 / 2} \biggl[ \frac{4! \sqrt{\pi}}{ 4^2 \cdot 2! } \biggr] \biggl[ \frac{ \sinh^2\eta }{(\cosh\eta - \cos\theta)^{\frac{5}{2}} } \biggr] </math>

 

<math>~=</math>

<math>~ \biggl(\frac{1}{2} \biggr)^{1 / 2} \biggl[ \frac{ 3\pi}{ 2^2} \biggr] \biggl[ \frac{ \sinh^2\eta }{(\cosh\eta - \cos\theta)^{\frac{5}{2}} } \biggr] \, . </math>

Wong (1973), Eq. (2.64)
except, see accompanying (pink, scroll-over balloon) COMMENT

Comment by J. E. Tohline on 2 July 2018: Note that this matches Wong's (1973) Eq. (2.65), except that in his expression the first term inside the curly braces on the right-hand side contains an extra factor of π. We are confident that our derived expression is correct because it is consistent with the immediately preceding expression — labeled Eq. (2.64) in Wong (1973).

Hence, the interior solution can be rewritten as,

<math>~\Phi_\mathrm{W}(\eta,\theta)\bigr|_\mathrm{interior}</math>

<math>~=</math>

<math>~ \frac{ GM}{2\pi a} \biggl[ \frac{\sinh^3\eta_0}{ \cosh{\eta_0}} \biggr] \biggl\{ \biggl[ \frac{ \sinh\eta }{(\cosh\eta - \cos\theta) } \biggr]^2 ~ - ~ \frac{2^2\sqrt{2}~ }{3\pi} (\cosh\eta - \cos\theta)^{1 / 2} \sum\limits^\infty_{n=0} \epsilon_n \cos(n\theta) \, . </math>

 

 

<math>~ \times Q_{n-1 / 2}(\cosh\eta) \biggl[

(n+\tfrac{1}{2})P_{n+\frac{1}{2}}(\cosh{\eta_0}) Q_{n - \frac{1}{2}}^2(\cosh{\eta_0}) 

- (n - \tfrac{3}{2}) ~ P_{n - \frac{1}{2}}(\cosh{\eta_0})~Q^2_{n + \frac{1}{2}}(\cosh{\eta_0}) \biggr] \biggr\} \, . </math>

Wong (1973), Eq. (2.65)
except, see accompanying (pink, scroll-over balloon) COMMENT

Appendix: Selected Toroidal Function Relationships

Here, we draw from the set of toroidal function relationships that have been identified as "Key Equations" in our accompanying Equations appendix.

A.1

Beginning with the identified "Key Equation",

LSU Key.png

<math>~Q_{n-1 / 2}^m (\lambda)</math>

<math>~=</math>

<math>~(-1)^n \frac{\pi^{3/2}}{\sqrt{2}~ \Gamma(n-m+1 / 2)} (x^2-1)^{1 / 4} P_{m-1 / 2}^n(x) \, , </math>

Gil, Segura, & Temme (2000):  eq. (8)

where:    

<math>~\lambda \equiv x/\sqrt{x^2-1}</math>

we'll identify <math>~x</math> with <math>~\cosh\eta</math> — in which case we have <math>~\lambda = \coth\eta</math> — and switch the index notations, <math>~n \leftrightarrow m</math>. This gives,

<math>~Q_{m-1 / 2}^n (\coth\eta)</math>

<math>~=</math>

<math>~(-1)^m \frac{\pi^{3/2}}{\sqrt{2} ~\Gamma(m-n+\frac{1}{2})} (\sinh\eta)^{1 / 2} P_{n-1 / 2}^m(\cosh\eta) \, . </math>

Drawing upon the Euler reflection formula for gamma functions, namely,

LSU Key.png

<math>~ \Gamma(z) ~\Gamma(1-z) </math>

<math>~=</math>

<math>~ \frac{\pi}{\sin(\pi z)} </math>

<math>~\biggl|</math>

for example, if
<math>~z \rightarrow (m-n + \tfrac{1}{2})</math>

<math>~\Rightarrow ~~~\Gamma(m-n+\tfrac{1}{2})~\Gamma(n-m+\tfrac{1}{2})</math>

<math>~=</math>

<math>~\pi \biggl\{\sin\biggl[ \frac{\pi}{2} + \pi(m-n) \biggr] \biggr\}^{-1}</math>

 

<math>~=</math>

<math>~\pi (-1)^{m-n} </math>

DLMF §5.5(ii)

<math>~\biggl|</math>
Valid for:

   <math>~z \ne0, \pm 1, \pm 2, </math> …

<math>~\biggl|</math>

where it is understood that <math>~m</math> and <math>~n</math> are each either zero or a positive integer, this toroidal-function relation becomes,

<math>~Q_{m-1 / 2}^n (\coth\eta)</math>

<math>~=</math>

<math>~(-1)^m~ \frac{\pi^{3/2}}{\sqrt{2} } \biggl[ \frac{ \Gamma(n - m +\frac{1}{2}) }{ \pi (-1)^{m-n} } \biggr] (\sinh\eta)^{1 / 2} P_{n-1 / 2}^m(\cosh\eta) </math>

 

 

<math>~=</math>

<math>~ (-1)^n \sqrt{ \frac{\pi}{2} } ~\Gamma(n - m + \tfrac{1}{2} )(\sinh\eta)^{1 / 2} P_{n-1 / 2}^m(\cosh\eta) \, . </math>


A.2

Again, beginning with the identified "Key Equation",

LSU Key.png

<math>~Q_{n-1 / 2}^m (\lambda)</math>

<math>~=</math>

<math>~(-1)^n \frac{\pi^{3/2}}{\sqrt{2}~ \Gamma(n-m+1 / 2)} (x^2-1)^{1 / 4} P_{m-1 / 2}^n(x) \, , </math>

Gil, Segura, & Temme (2000):  eq. (8)

where:    

<math>~\lambda \equiv x/\sqrt{x^2-1}</math>

this time, without switching index notations, we'll identify <math>~x</math> with <math>~\coth\eta</math> — in which case we have <math>~\lambda = \cosh\eta</math>. This gives,

<math>~Q_{n-1 / 2}^m (\cosh\eta)</math>

<math>~=</math>

<math>~(-1)^n \frac{\pi^{3/2}}{\sqrt{2} ~\Gamma(n-m+\frac{1}{2})} \biggl( \frac{1}{\sinh\eta} \biggr)^{1 / 2} P_{m-1 / 2}^n(\coth\eta) \, . </math>

Drawing upon the same Euler reflection formula for gamma functions, as quoted above, this toroidal function relation can be rewritten as,

<math>~Q_{n-1 / 2}^m (\cosh\eta)</math>

<math>~=</math>

<math>~(-1)^n \frac{\pi^{3/2}}{\sqrt{2} } \biggl[ \frac{\Gamma(m-n+\frac{1}{2})}{\pi (-1)^{m-n}} \biggr] \biggl( \frac{1}{\sinh\eta} \biggr)^{1 / 2} P_{m-1 / 2}^n(\coth\eta) </math>

 

<math>~=</math>

<math>~(-1)^{-m}~ \sqrt{\frac{\pi}{2}} \biggl[ \frac{\Gamma(m-n+\frac{1}{2})}{\sqrt{\sinh\eta}} \biggr] P_{m-1 / 2}^n(\coth\eta) \, . </math>

Finally, calling upon the "Key Equation" relation,

LSU Key.png

<math>~ P_\nu^n(z) </math>

<math>~=</math>

<math>~ \frac{\Gamma(\nu + n + 1)}{\Gamma(\nu - n + 1)} P_\nu^{-n}(z) </math>

A. Erdélyi (1953):  Volume I, §3.3.1, p. 140, eq. (7)

making the index notation substitution, <math>~\nu \rightarrow (m-\tfrac{1}{2})</math>, and associating <math>~z</math> with <math>~ \coth\eta</math> gives,

<math>~P^n_{m-\frac{1}{2}}(\coth\eta)</math>

<math>~=</math>

<math>~\biggl[ \frac{\Gamma(m+n+\frac{1}{2})}{\Gamma(m-n+\frac{1}{2})} \biggr]P^{-n}_{m-\frac{1}{2}}(\coth\eta) \, .</math>

As a result, we can write,

<math>~Q_{n-1 / 2}^m (\cosh\eta)</math>

<math>~=</math>

<math>~(-1)^{-m}~ \sqrt{\frac{\pi}{2}} \biggl[ \frac{\Gamma(m+n+\frac{1}{2})}{\sqrt{\sinh\eta}} \biggr] P_{m-1 / 2}^{-n}(\coth\eta) </math>

 

<math>~\Rightarrow ~~~ P_{m-1 / 2}^{-n}(\coth\eta) </math>

<math>~=</math>

<math>~(-1)^m~\sqrt{\frac{2}{\pi}} \biggl[ \frac{\sqrt{\sinh\eta}}{\Gamma(m+n+\frac{1}{2})} \biggr] Q_{n-1 / 2}^m (\cosh\eta) \, . </math>


A.3

Here, our objective is to evaluate the definite integral,

<math>~\int_{-\pi}^{\pi} \frac{\cos[n(\theta - \theta^')] d\theta}{(\cosh\eta - \cos\theta)^{5 / 2}} </math>

<math>~=</math>

<math>~ \cos(n\theta^') \int_{-\pi}^{\pi} \frac{ \cos(n\theta) ~ d\theta}{(\cosh\eta - \cos\theta)^{5 / 2}} + \sin(n\theta^') \cancelto{0}{ \int_{-\pi}^{\pi} \frac{ \sin(n\theta) d\theta}{(\cosh\eta - \cos\theta)^{5 / 2}} } </math>

 

<math>~=</math>

<math>~ 2 \cos(n\theta^') \int_{0}^{\pi} \frac{ \cos(n\theta)~ d\theta}{(\cosh\eta - \cos\theta)^{5 / 2}} \, . </math>

Notice that, since the limits of the integration are <math>~-\pi</math> to <math>~+\pi</math>:   The second integral on the right-hand-side goes to zero because the numerator of its integrand — i.e., <math>~\sin(n\theta)</math> — is an odd function; and, with regard to the first integral on the right-hand-side, the lower integration limit can be set to zero and the result doubled because the numerator of its integrand — i.e., <math>~\cos(n\theta)</math> — is an even function.

Drawing from Volume I of A. Erdélyi's (1953) Higher Transcendental Functions, we find the following "Key Equation":

LSU Key.png

<math>~Q_\nu^\mu(z)</math>

<math>~=</math>

<math>~ e^{i \mu \pi} ~ (2\pi)^{-\frac{1}{2}} (z^2-1)^{\mu/2} ~\Gamma(\mu + \tfrac{1}{2})~\biggl\{ \int_0^\pi (z - \cos t)^{-\mu - \frac{1}{2}} \cos[(\nu + \tfrac{1}{2})t] ~dt -\cos(\nu\pi) \int_0^\infty (z + \cosh t)^{-\mu - \frac{1}{2}} e^{-(\nu + \frac{1}{2})t} ~dt \biggr\} </math>

A. Erdélyi (1953):  Volume I, §3.7, p. 156, eq. (10)

Valid for:    

<math>~\mathrm{Re} ~\nu > -\tfrac{1}{2}</math> 

    and    

<math>~\mathrm{Re} (\nu + \mu + 1) > 0 \, .</math>

Next we adopt the associations, <math>~z \rightarrow \cosh\eta</math>, <math>~t \rightarrow \theta</math>, <math>~\mu \rightarrow 2</math>, and, <math>~\nu \rightarrow n - \tfrac{1}{2}</math>, where <math>~n</math> is zero or a positive integer. In this case we have,

<math>~Q_{n - \frac{1}{2}}^2 (\cosh\eta)</math>

<math>~=</math>

<math>~ (2\pi)^{-\frac{1}{2}} (\cosh^2\eta-1) ~\Gamma(\tfrac{5}{2})~\biggl\{ \int_0^\pi (\cosh\eta - \cos \theta)^{-\frac{5}{2}} \cos(n\theta) ~d\theta - \cancelto{0}{\cos[(n-\tfrac{1}{2})\pi] }~~\int_0^\infty (\cosh\eta + \cosh \theta)^{- \frac{5}{2}} e^{-n\theta} ~d\theta \biggr\} \, , </math>

where the prefactor of the second term — that is, <math>~\cos[(n-\tfrac{1}{2})\pi] </math> — goes to zero for all allowable values of the integer, <math>~n</math>. Hence, we conclude that,

<math>~2\cos(n\theta^') \int_0^\pi \frac{ \cos(n\theta)~d\theta }{ (\cosh\eta - \cos \theta)^{\frac{5}{2}} } </math>

<math>~=</math>

<math>~\frac{ 2(2\pi)^{\frac{1}{2}} Q_{n - \frac{1}{2}}^2 (\cosh\eta) \cos(n\theta^')}{ (\cosh^2\eta-1) ~\Gamma(\tfrac{5}{2})~ } </math>

 

<math>~=</math>

<math>~\biggl[ \frac{ 2^3 \sqrt{2} }{ 3 } \biggr] \frac{ Q_{n - \frac{1}{2}}^2(\cosh\eta) \cos(n\theta^')}{ \sinh^2\eta } \, . </math>

where we have set,

<math>~ \Gamma(\tfrac{5}{2}) = \Gamma(\tfrac{1}{2} + 2) = \frac{ \sqrt{\pi} \cdot 4! }{4^2 \cdot 2!} = \frac{\sqrt{\pi} \cdot 2^3\cdot 3}{ 2^5 } = \frac{3 \sqrt{\pi}}{2^2} \, . </math>

A.4

Beginning with the identified "Key Equation",

LSU Key.png

<math>~ \int_a^b\biggl[(\nu - \sigma)(\nu + \sigma + 1) + (\rho^2 - \mu^2)(1 - z^2)^{-1} \biggr] w_\nu^\mu ~w_\sigma^\rho ~dz </math>

<math>~=</math>

<math>~ \biggl[ z(\nu-\sigma) w_\nu^\mu ~w_\sigma^\rho + (\sigma+\rho) w_\nu^\mu ~ w_{\sigma-1}^\rho - (\nu + \mu) w_{\nu - 1}^\mu ~w_\sigma^\rho \biggr]_a^b </math>

A. Erdélyi (1953):  Volume I, §3.12, p. 169, eq. (1)

where, <math>~w_\nu^\mu(z)</math> and <math>~w_\sigma^\rho(z)</math> denote any solutions of Legendre's differential equation

we will adopt the associations:   <math>~z \rightarrow t</math>, <math>~\mu \rightarrow 2</math>, <math>~\nu \rightarrow (n - \tfrac{1}{2})</math>, <math>~\rho \rightarrow 0</math>, and <math>~\sigma \rightarrow ( n - \tfrac{1}{2})</math>. As a result, Erdélyi's (1953) expression becomes,

<math>~ \int_a^b\biggl[ -4(1 - t^2)^{-1} \biggr] Q_{n - \frac{1}{2}}^2(t) ~X_{n - \frac{1}{2}}(t) ~dt </math>

<math>~=</math>

<math>~ \biggl[ (n - \tfrac{1}{2} ) Q_{n - \frac{1}{2}}^2(t) ~ X_{n - \frac{3}{2}}(t) - (n + \tfrac{3}{2}) Q_{n - \frac{3}{2}}^2(t) ~X_{n - \frac{1}{2}}(t) \biggr]_a^b \, . </math>

Drawing upon the recurrence "Key Equation,"

LSU Key.png

<math>~(\nu - \mu + 1)P^\mu_{\nu + 1} (z)</math>

<math>~=</math>

<math>~ (2\nu + 1)z P_\nu^\mu(z) - (\nu + \mu)P^\mu_{\nu-1}(z) </math>

Abramowitz & Stegun (1995), p. 334, eq. (8.5.3)

NOTE: <math>~Q_\nu^\mu</math>, as well as <math>~P_\nu^\mu</math>, satisfies this same recurrence relation.

which means, after making the associations, <math>~z \rightarrow t</math>, <math>~\mu \rightarrow 0</math> and <math>~\nu \rightarrow (n-\tfrac{1}{2})</math>, that,

<math>~(n+\tfrac{1}{2})X_{n+\frac{1}{2}}(t)</math>

<math>~=</math>

<math>~2n t X_{n-\frac{1}{2}}(t) - (n-\tfrac{1}{2})X_{n - \frac{3}{2}}(t)</math>

<math>~\Rightarrow ~~~(n-\tfrac{1}{2})X_{n - \frac{3}{2}}(t) </math>

<math>~=</math>

<math>~2n t X_{n-\frac{1}{2}}(t) - (n+\tfrac{1}{2})X_{n+\frac{1}{2}}(t)</math>

the integral can be rewritten as,

<math>~ \int_a^b\biggl[ \frac{Q_{n - \frac{1}{2}}^2(t) ~X_{n - \frac{1}{2}}(t) }{(t^2-1)}\biggr]~dt </math>

<math>~=</math>

<math>~ \frac{1}{4} \biggl\{ \biggl[ 2n t X_{n-\frac{1}{2}}(t) - (n+\tfrac{1}{2})X_{n+\frac{1}{2}}(t) \biggr] Q_{n - \frac{1}{2}}^2(t) - (n + \tfrac{3}{2}) Q_{n - \frac{3}{2}}^2(t) ~X_{n - \frac{1}{2}}(t) \biggr\}_a^b </math>

 

<math>~=</math>

<math>~ \frac{1}{4} \biggl\{ \biggl[ 2n t Q_{n - \frac{1}{2}}^2(t) - (n + \tfrac{3}{2}) Q_{n - \frac{3}{2}}^2(t) \biggr] X_{n - \frac{1}{2}}(t) - (n+\tfrac{1}{2})X_{n+\frac{1}{2}}(t) Q_{n - \frac{1}{2}}^2(t) \biggr\}_a^b \, . </math>

Returning to the same recurrence "Key Equation," but this time adopting the associations, <math>~z \rightarrow t</math>, <math>~\mu \rightarrow 2</math> and <math>~\nu \rightarrow (n-\tfrac{1}{2})</math>, we can write,

<math>~(n - \tfrac{3}{2})Q^2_{n + \frac{1}{2}}(t)</math>

<math>~=</math>

<math>~ 2n t Q^2_{n - \frac{1}{2}}(t) - (n + \tfrac{3}{2}) Q^2_{n - \frac{3}{2}} (t) \, , </math>

in which case the integral becomes,

<math>~ \int_a^b\biggl[ \frac{Q_{n - \frac{1}{2}}^2(t) ~X_{n - \frac{1}{2}}(t) }{(t^2-1)}\biggr]~dt </math>

<math>~=</math>

<math>~ \frac{1}{4} \biggl\{ (n - \tfrac{3}{2})Q^2_{n + \frac{1}{2}}(t) ~ X_{n - \frac{1}{2}}(t) - (n+\tfrac{1}{2})X_{n+\frac{1}{2}}(t) Q_{n - \frac{1}{2}}^2(t) \biggr\}_a^b \, . </math>


See Also

Whitworth's (1981) Isothermal Free-Energy Surface

© 2014 - 2021 by Joel E. Tohline
|   H_Book Home   |   YouTube   |
Appendices: | Equations | Variables | References | Ramblings | Images | myphys.lsu | ADS |
Recommended citation:   Tohline, Joel E. (2021), The Structure, Stability, & Dynamics of Self-Gravitating Fluids, a (MediaWiki-based) Vistrails.org publication, https://www.vistrails.org/index.php/User:Tohline/citation