Difference between revisions of "User:Tohline/2DStructure/ToroidalGreenFunction"
Line 163: | Line 163: | ||
</tr> | </tr> | ||
</table> | </table> | ||
==Green's Function Expression== | |||
On p. 293, [http://adsabs.harvard.edu/abs/1973AnPhy..77..279W Wong (1973)] states that, in toroidal coordinates, the Green's function is, | |||
<div align="center"> | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~\frac{1}{|~\vec{x} - {\vec{x}}^{~'} ~|} </math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
\frac{1}{\pi a} \biggl[ (\cosh\eta - \cos\theta)(\cosh \eta^' - \cos\theta^') \biggr]^{1 /2 } | |||
\sum\limits_{m,n} (-1)^m \epsilon_m \epsilon_n ~\frac{\Gamma(n-m+\tfrac{1}{2})}{\Gamma(n + m + \tfrac{1}{2})} | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
| |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
\times \cos[m(\psi - \psi^')][\cos[n(\theta - \theta^')] ~\begin{cases}P^m_{n-1 / 2}(\cosh\eta) ~Q^m_{n-1 / 2}(\cosh\eta^') ~~~\eta^' > \eta \\P^m_{n-1 / 2}(\cosh\eta^') ~Q^m_{n-1 / 2}(\cosh\eta)~~~\eta^' < \eta | |||
\end{cases}\, , | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="center" colspan="3"> | |||
[http://adsabs.harvard.edu/abs/1973AnPhy..77..279W Wong (1973)], Eq. (2.53) | |||
</td> | |||
</tr> | |||
</table> | |||
</div> | |||
where, <math>~P^m_{n-1 / 2}, Q^m_{n-1 / 2}</math> are "<font color="darkgreen">Legendre functions of the first and second kind with order <math>~n - \tfrac{1}{2}</math> and degree <math>~m</math> (toroidal harmonics)</font>," and <math>~\epsilon_m</math> is the Neumann factor, that is, <math>~\epsilon_0 = 1</math> and <math>~\epsilon_m = 2</math> for all <math>~m \ge 1</math>. | |||
=See Also= | =See Also= |
Revision as of 23:47, 15 June 2018
Using Toroidal Coordinates to Determine the Gravitational Potential
NOTE: An earlier version of this chapter has been shifted to our "Ramblings" Appendix.
| Tiled Menu | Tables of Content | Banner Video | Tohline Home Page | |
Here we build upon our accompanying review of the types of numerical techniques that various astrophysics research groups have developed to solve for the Newtonian gravitational potential, <math>~\Phi(\vec{x})</math>, given a specified, three-dimensional mass distribution, <math>~\rho(\vec{x})</math>. Our focus is on the use of toroidal coordinates to solve the integral formulation of the Poisson equation, namely,
<math>~ \Phi(\vec{x})</math> |
<math>~=</math> |
<math>~ -G \int \frac{\rho(\vec{x}^{~'})}{|\vec{x}^{~'} - \vec{x}|} d^3x^' \, .</math> |
For the most part, we will adopt the notation used by C.-Y. Wong (1973, Annals of Physics, 77, 279); in an accompanying discussion, we review additional results from this insightful 1973 paper, as well as a paper of his that was published the following year in The Astrophysical Journal, namely, Wong (1974).
Basic Elements of the Toroidal Coordinate System
Given the meridional-plane coordinate location of a toroidal-coordinate system's axisymmetric anchor ring, <math>~(\varpi,z) = (a,Z_0)</math>, the relationship between toroidal coordinates and Cartesian coordinates is,
<math>~x</math> |
<math>~=</math> |
<math>~\frac{a \sinh\eta \cos\psi}{(\cosh\eta - \cos\theta)} \, ,</math> |
<math>~y</math> |
<math>~=</math> |
<math>~\frac{a \sinh\eta \sin\psi}{(\cosh\eta - \cos\theta)} \, ,</math> |
<math>~z - Z_0</math> |
<math>~=</math> |
<math>~\frac{a \sin\theta}{(\cosh\eta - \cos\theta)} \, .</math> |
This set of coordinate relations appear as equations 2.1 - 2.3 in Wong (1973). They may also be found, for example, on p. 1301 within eq. (10.3.75) of [MF53]; in §14.19 of NIST's Digital Library of Mathematical Functions; or even within Wikipedia. (In most cases the implicit assumption is that <math>~Z_0 = 0</math>.)
Mapping the other direction [see equations 2.13 - 2.15 of Wong (1973) ], we have,
<math>~\eta</math> |
<math>~=</math> |
<math>~\ln\biggl(\frac{r_1}{r_2} \biggr) \, ,</math> |
<math>~\cos\theta</math> |
<math>~=</math> |
<math>~\frac{(r_1^2 + r_2^2 - 4a^2)}{2r_1 r_2} \, ,</math> |
<math>~\tan\psi</math> |
<math>~=</math> |
<math>~\frac{y}{x} \, ,</math> |
where,
<math>~r_1^2 </math> |
<math>~\equiv</math> |
<math>~[(x^2 + y^2)^{1 / 2} + a]^2 + (z-Z_0)^2 \, ,</math> |
<math>~r_2^2 </math> |
<math>~\equiv</math> |
<math>~[(x^2 + y^2)^{1 / 2} - a]^2 + (z-Z_0)^2 \, ,</math> |
and <math>~\theta</math> has the same sign as <math>~(z-Z_0)</math>.
According to p. 1301, eq. (10.3.75) of [MF53] — or, for example, as found in Wikipedia — the differential volume element is,
<math>~d^3x</math> |
<math>~=</math> |
<math>~h_\eta h_\theta h_\psi d\eta d\theta d\psi</math> |
<math>~=</math> |
<math>~\biggl[ \frac{a^3 \sinh\eta}{(\cosh\eta - \cos\theta)^3} \biggr] d\eta~ d\theta~ d\psi \, .</math> |
Green's Function Expression
On p. 293, Wong (1973) states that, in toroidal coordinates, the Green's function is,
<math>~\frac{1}{|~\vec{x} - {\vec{x}}^{~'} ~|} </math> |
<math>~=</math> |
<math>~ \frac{1}{\pi a} \biggl[ (\cosh\eta - \cos\theta)(\cosh \eta^' - \cos\theta^') \biggr]^{1 /2 } \sum\limits_{m,n} (-1)^m \epsilon_m \epsilon_n ~\frac{\Gamma(n-m+\tfrac{1}{2})}{\Gamma(n + m + \tfrac{1}{2})} </math> |
|
|
<math>~ \times \cos[m(\psi - \psi^')][\cos[n(\theta - \theta^')] ~\begin{cases}P^m_{n-1 / 2}(\cosh\eta) ~Q^m_{n-1 / 2}(\cosh\eta^') ~~~\eta^' > \eta \\P^m_{n-1 / 2}(\cosh\eta^') ~Q^m_{n-1 / 2}(\cosh\eta)~~~\eta^' < \eta \end{cases}\, , </math> |
Wong (1973), Eq. (2.53) |
where, <math>~P^m_{n-1 / 2}, Q^m_{n-1 / 2}</math> are "Legendre functions of the first and second kind with order <math>~n - \tfrac{1}{2}</math> and degree <math>~m</math> (toroidal harmonics)," and <math>~\epsilon_m</math> is the Neumann factor, that is, <math>~\epsilon_0 = 1</math> and <math>~\epsilon_m = 2</math> for all <math>~m \ge 1</math>.
See Also
© 2014 - 2021 by Joel E. Tohline |