Difference between revisions of "User:Tohline/Appendix/Mathematics/ToroidalSynopsis01"

From VistrailsWiki
Jump to navigation Jump to search
Line 677: Line 677:
   <td align="center">
   <td align="center">
<math>
<math>
\biggl[\frac{4\varpi^' \varpi}{(\varpi^' + \varpi)^2 + (z^' - z)^2} \biggr]
\frac{4\varpi^' \varpi}{(\varpi^' + \varpi)^2 + (z^' - z)^2}  
</math>
</math>
   </td>
   </td>

Revision as of 21:10, 5 June 2018

Synopsis of Toroidal Coordinate Approach

Whitworth's (1981) Isothermal Free-Energy Surface
|   Tiled Menu   |   Tables of Content   |  Banner Video   |  Tohline Home Page   |

Basics

Here we attempt to bring together — in as succinct a manner as possible — our approach and C.-Y. Wong's (1973) approach to determining the gravitational potential of an axisymmetric, uniform-density torus that has a major radius, <math>~R</math>, and a minor, cross-sectional radius, <math>~d</math>. The relevant toroidal coordinate system is one based on an anchor ring of major radius,

<math>~a^2 \equiv R^2 - d^2 \, .</math>

If the meridional-plane location of the anchor ring — as written in cylindrical coordinates — is, <math>~(\varpi, z) = (a,Z_0)</math>, then the preferred toroidal-coordinate system has meridional-plane coordinates, <math>~(\eta, \theta)</math>, defined such that,

<math>~\eta</math>

<math>~=</math>

<math>~\ln\biggl(\frac{r_1}{r_2} \biggr) \, ,</math>

    and,    

<math>~\cos\theta</math>

<math>~=</math>

<math>~\frac{(r_1^2 + r_2^2 - 4a^2)}{2r_1 r_2} \, ,</math>

where,

<math>~r_1^2 </math>

<math>~\equiv</math>

<math>~(\varpi + a)^2 + (z-Z_0)^2 \, ,</math>

    and,    

<math>~r_2^2 </math>

<math>~\equiv</math>

<math>~(\varpi - a)^2 + (z-Z_0)^2 \, ,</math>

and <math>~\theta</math> has the same sign as <math>~(z-Z_0)</math>. Mapping the other direction, we have,

<math>~\varpi</math>

<math>~=</math>

<math>~\frac{a \sinh\eta }{(\cosh\eta - \cos\theta)} \, ,</math>

    and,    

<math>~z-Z_0</math>

<math>~=</math>

<math>~\frac{a \sin\theta}{(\cosh\eta - \cos\theta)} \, .</math>

The three-dimensional differential volume element is,

<math>~d^3 r</math>

<math>~=</math>

<math>\varpi d\varpi ~dz ~d\psi</math>

<math>~=</math>

<math>~\biggl[ \frac{a^3\sinh\eta}{(\cosh\eta - \cos\theta)^3} \biggr] d\eta~ d\theta~ d\psi \, .</math>

Note that, if <math>~\eta_0</math> identifies the surface of the uniform-density torus, then,

<math>~\cosh\eta_0</math>

<math>~=</math>

<math>~\frac{R}{d} \, ,</math>

     

<math>~\sinh\eta_0</math>

<math>~=</math>

<math>~\frac{a}{d} \, ,</math>

    and,    

<math>~\coth\eta_0</math>

<math>~=</math>

<math>~\frac{R}{a} \, ;</math>

and when the integral over the volume element is completed — that is, over all <math>~\psi</math>, over all <math>~\theta</math>, and over the "radial" interval, <math>~\eta_0 \le \eta \le \infty</math> — the resulting volume is,

<math>~V</math>

<math>~=</math>

<math>~\frac{2\pi^2 \cosh\eta_0}{\sinh^3\eta_0}</math>

<math>~=</math>

<math>~2\pi^2 Rd^2 \, .</math>

Also, given that,

<math>~\cosh\eta</math>

<math>~=</math>

<math>~\frac{1}{2}\biggl[ e^\eta + e^{-\eta} \biggr]</math>

    and,    

<math>~\sinh\eta</math>

<math>~=</math>

<math>~\frac{1}{2}\biggl[ e^\eta - e^{-\eta} \biggr] \, ,</math>

we have,

<math>~\coth\eta</math>

<math>~=</math>

<math>~\biggl[ e^\eta + e^{-\eta} \biggr]\biggl[ e^\eta - e^{-\eta} \biggr]^{-1}</math>

<math>~=</math>

<math>~\biggl[ \frac{r_1}{r_2} + \frac{r_2}{r_1} \biggr]\biggl[ \frac{r_1}{r_2} - \frac{r_2}{r_1} \biggr]^{-1}</math>

 

<math>~=</math>

<math>~\biggl[ \frac{r_1^2 + r_2^2}{r_1 r_2} \biggr]\biggl[ \frac{r_1^2 - r_2^2}{r_1 r_2} \biggr]^{-1}</math>

<math>~=</math>

<math>~\biggl[ \frac{r_1^2 + r_2^2}{r_1^2 - r_2^2} \biggr]</math>

 

<math>~=</math>

<math>~ \frac{ \varpi^2 + a^2 + (z - Z_0)^2 }{ 2a\varpi } \, . </math>

Exploration

Want to explore argument of <math>~Q_{-1 / 2}(\Chi)</math>, namely,

<math> \Chi \equiv \frac{(\varpi^')^2 + \varpi^2 + (z^' - z)^2}{2\varpi^' \varpi} . </math>

Therefore,

<math>~2\varpi \biggl[ \varpi^' \Chi - a\coth\eta\biggr]</math>

<math>~=</math>

<math>~ (\varpi^')^2 + \varpi^2 + (z^' - z)^2 - [\varpi^2 + a^2 + (z - Z_0)^2 ] </math>

 

<math>~=</math>

<math>~ (\varpi^')^2 - a^2 + [ (z^')^2 - 2z^' z + z^2]- [z^2 - 2zZ_0 + Z_0^2] </math>

 

<math>~=</math>

<math>~ (\varpi^')^2 - a^2 + (z^')^2- Z_0^2 +2z(Z_0 - z^' ) </math>

<math>~\Rightarrow ~~~2a\biggl[ \frac{\sinh\eta }{(\cosh\eta - \cos\theta)} \biggr]\biggl[ \varpi^' \Chi - a\coth\eta\biggr]</math>

<math>~=</math>

<math>~ (\varpi^')^2 - a^2 + (z^')^2- Z_0^2 +2(Z_0 - z^' )\biggl[ Z_0 + \frac{a \sin\theta}{(\cosh\eta - \cos\theta)} \biggr] </math>

 

<math>~=</math>

<math>~ 2aC_0 +2a(Z_0 - z^' )\biggl[ \frac{\sin\theta}{(\cosh\eta - \cos\theta)} \biggr] </math>

<math>~\Rightarrow ~~~ \sinh\eta \biggl[ \varpi^' \Chi - a\coth\eta\biggr]</math>

<math>~=</math>

<math>~ C_0 (\cosh\eta - \cos\theta) + (Z_0 - z^' ) \sin\theta </math>

<math>~\Rightarrow ~~~ \varpi^' \Chi </math>

<math>~=</math>

<math>~ \frac{1}{\sinh\eta} \biggl[ C_0 (\cosh\eta - \cos\theta) + (Z_0 - z^' ) \sin\theta + a\cosh\eta\biggr] </math>

<math>~\Rightarrow ~~~ \Chi </math>

<math>~=</math>

<math>~ \frac{1}{\varpi^' \sinh\eta} \biggl[ (C_0 + a)\cosh\eta + (Z_0 - z^' ) \sin\theta - C_0 \cos\theta \biggr] </math>

where,

<math>~ C_0 \equiv \frac{1}{2a}\biggl[ (\varpi^')^2 - a^2 + (z^')^2- Z_0^2 +2Z_0 (Z_0 - z^' ) \biggr] = \frac{1}{2a}\biggl[ (\varpi^')^2 - a^2 + (z^')^2 +Z_0^2 - 2Z_0 z^' \biggr] = \frac{1}{2a}\biggl[ (\varpi^')^2 - a^2 + (z^' - Z_0)^2 \biggr] \, . </math>

Now, notice that,

<math>~ ( \varpi^')^2 + a^2 + (z^' - Z_0)^2 </math>

<math>~=</math>

<math>~ 2a\varpi^'~\coth\eta^' </math>

<math>~\Rightarrow ~~~ ( \varpi^')^2 - a^2 + (z^' - Z_0)^2 </math>

<math>~=</math>

<math>~ 2a\varpi^'~\coth\eta^' - 2a^2 </math>

<math>~\Rightarrow ~~~ C_0 </math>

<math>~=</math>

<math>~ \varpi^'~\coth\eta^' - a </math>

 

<math>~=</math>

<math>~ \biggl[ \frac{a \sinh\eta^' }{(\cosh\eta^' - \cos\theta^')} \biggr] ~\coth\eta^' - a </math>

 

<math>~=</math>

<math>~ \biggl[ \frac{a \cosh\eta^' }{(\cosh\eta^' - \cos\theta^')} \biggr] - a \, . </math>

Hence,

<math>~ \Chi </math>

<math>~=</math>

<math>~ \frac{\cosh\eta}{\varpi^' \sinh\eta} \biggl[ \varpi^' \coth\eta^' \biggr] + \frac{1}{\sinh\eta} \biggl[ \frac{(\cosh\eta^' - \cos\theta^')}{a \sinh\eta^' } \biggr] \biggl[ (Z_0 - z^' ) \sin\theta - C_0 \cos\theta \biggr] </math>

 

<math>~=</math>

<math>~ \coth\eta \cdot \coth\eta^' +

\biggl[ \frac{(\cosh\eta^' - \cos\theta^')}{a \sinh\eta \cdot \sinh\eta^' } \biggr]  \biggl[  (Z_0 - z^' ) \sin\theta - C_0 \cos\theta \biggr]  

</math>

 

<math>~=</math>

<math>~ \coth\eta \cdot \coth\eta^' -

\biggl[ \frac{(\cosh\eta^' - \cos\theta^')}{a \sinh\eta \cdot \sinh\eta^' } \biggr]  \biggl\{ \biggl[ \frac{a \sin\theta^'}{(\cosh\eta^' - \cos\theta^')} \biggr] \sin\theta + \biggl[ \frac{a \cosh\eta^' }{(\cosh\eta^' - \cos\theta^')} \biggr] \cos\theta - a\cos\theta\biggr\}  

</math>

 

<math>~=</math>

<math>~ \coth\eta \cdot \coth\eta^' -

\biggl[ \frac{1 }{ \sinh\eta \cdot \sinh\eta^' } \biggr]  \biggl\{  \sin\theta^' \sin\theta +  \cosh\eta^'  \cos\theta - (\cosh\eta^' - \cos\theta^')\cos\theta\biggr\}  

</math>

 

<math>~=</math>

<math>~ \coth\eta \cdot \coth\eta^' -

\biggl[ \frac{\sin\theta^' \sin\theta +\cos\theta^'\cos\theta }{ \sinh\eta \cdot \sinh\eta^' } \biggr] 

</math>

 

<math>~=</math>

<math>~ \biggl[ \frac{\cosh\eta \cdot \cosh\eta^' - \cos(\theta^' - \theta) }{ \sinh\eta \cdot \sinh\eta^' } \biggr] \, . </math>

Also,

<math>~ \Chi +1 </math>

<math>~=</math>

<math>~ \biggl[ \frac{\sinh\eta \cdot \sinh\eta^' + \cosh\eta \cdot \cosh\eta^' - \cos(\theta^' - \theta) }{ \sinh\eta \cdot \sinh\eta^' } \biggr] </math>

 

<math>~=</math>

<math>~ \biggl[ \frac{ \cosh(\eta^' + \eta) - \cos(\theta^' - \theta) }{ \sinh\eta \cdot \sinh\eta^' } \biggr] </math>

<math>~ \Rightarrow ~~~\mu^2 \equiv \frac{ 2 }{\Chi +1 }</math>

<math>~=</math>

<math>~ \biggl[ \frac{2 \sinh\eta \cdot \sinh\eta^' }{ \cosh(\eta^' + \eta) - \cos(\theta^' - \theta) } \biggr] \, . </math>

NOTE by Tohline: On 5 June 2018, I used Excel to test the validity of the toroidal-coordinate-based expressions that have been derived here, and summarized in the following table.

Summary Table

Quantity

Raw Expression in Cylindrical Coordinates

Expression in Terms of Toroidal Coordinates

<math>~\Chi</math>

<math>

\frac{(\varpi^')^2 + \varpi^2 + (z^' - z)^2}{2\varpi^'  \varpi} 

</math>

<math>~ \frac{\cosh\eta \cdot \cosh\eta^' - \cos(\theta^' - \theta) }{ \sinh\eta \cdot \sinh\eta^' } </math>

<math>~\mu^2 \equiv \frac{2}{\Chi + 1}</math>

<math> \frac{4\varpi^' \varpi}{(\varpi^' + \varpi)^2 + (z^' - z)^2} </math>

<math>~ \frac{2 \sinh\eta \cdot \sinh\eta^' }{ \cosh(\eta^' + \eta) - \cos(\theta^' - \theta) } </math>

See Also

Whitworth's (1981) Isothermal Free-Energy Surface

© 2014 - 2021 by Joel E. Tohline
|   H_Book Home   |   YouTube   |
Appendices: | Equations | Variables | References | Ramblings | Images | myphys.lsu | ADS |
Recommended citation:   Tohline, Joel E. (2021), The Structure, Stability, & Dynamics of Self-Gravitating Fluids, a (MediaWiki-based) Vistrails.org publication, https://www.vistrails.org/index.php/User:Tohline/citation