Difference between revisions of "User:Tohline/Appendix/Mathematics/ToroidalConfusion"

From VistrailsWiki
Jump to navigation Jump to search
Line 190: Line 190:
<tr>
<tr>
   <td align="center" colspan="3">Abramowitz &amp; Stegun (1995), eq. (8.13.1)</td>
   <td align="center" colspan="3">Abramowitz &amp; Stegun (1995), eq. (8.13.1)</td>
</tr>
</table>
<table border="1" cellpadding="5" align="center" width="80%">
<tr>
  <td align="center">
Proof that these are the same expressions:
  </td>
</tr>
<tr>
  <td align="left">
Copying the Whipple's formula from [https://dlmf.nist.gov/14.19.v &sect;14.19 of DLMF],
<table border="0" cellpadding="5" align="center">
<tr>
  <td align="right">
<math>~\boldsymbol{Q}^{m}_{n-\frac{1}{2}}\left(\cosh\xi\right)</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
\frac{\Gamma\left(m-n+
\tfrac{1}{2}\right)}{\Gamma\left(m+n+\tfrac{1}{2}\right)}\left(\frac{\pi}{2
\sinh\xi}\right)^{1 / 2}P^{n}_{m-\frac{1}{2}}\left(\coth\xi\right) \, ,
</math>
  </td>
</tr>
</table>
then setting <math>~m = n = 0</math>, we have,
<table border="0" cellpadding="5" align="center">
<tr>
  <td align="right">
<math>~\boldsymbol{Q}^{0}_{-\frac{1}{2}}\left(\cosh\xi\right)</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
\frac{\Gamma\left(\tfrac{1}{2}\right)}{\Gamma\left(\tfrac{1}{2}\right)}\left(\frac{\pi}{2\sinh\xi}\right)^{1 / 2}P^{0}_{-\frac{1}{2}}\left(\coth\xi\right) \, .
</math>
  </td>
</tr>
</table>
Step #1: &nbsp; Associate &hellip; <math>z \leftrightarrow \cosh\xi</math>.  Then,
<table border="0" cellpadding="5" align="center">
<tr>
  <td align="right">
<math>~\boldsymbol{Q}^{0}_{-\frac{1}{2}}\left(\cosh\xi\right)</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
\biggl(\frac{\pi}{2} \biggr)^{1/2}
\left[\frac{1}{\sqrt{z^2-1}}\right]^{1 / 2}
P^{0}_{-\frac{1}{2}}\biggl( \frac{z}{\sqrt{z^2-1}} \biggr) \, .
</math>
  </td>
</tr>
</table>
Step #2: &nbsp; Now making the association &hellip; <math>\Lambda \leftrightarrow z/\sqrt{z^2-1}</math>, we can write,
<table border="0" cellpadding="5" align="center">
<tr>
  <td align="right">
<math>~P_{-1 / 2}(\Lambda)</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
\frac{2}{\pi} \biggl[\frac{2}{\Lambda+1}\biggr]^{1 / 2} ~K\biggl( \sqrt{ \frac{\Lambda-1}{\Lambda+1}} \biggr)
</math>
  </td>
</tr>
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
\frac{2}{\pi} \biggl[\frac{2\sqrt{z^2-1} }{z+\sqrt{z^2-1} }\biggr]^{1 / 2} ~K\biggl( \sqrt{ \frac{z-\sqrt{z^2-1} }{z+\sqrt{z^2-1} }} \biggr) \, .
</math>
  </td>
</tr>
</table>
Step #3: &nbsp; Again, making the association &hellip; <math>z \leftrightarrow \cosh\xi</math>, means,
<table border="0" cellpadding="5" align="center">
<tr>
  <td align="right">
<math>~P_{-1 / 2}(\Lambda)</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
\frac{2}{\pi} \biggl[\frac{2\sinh\xi }{\cosh\xi+\sinh\xi }\biggr]^{1 / 2} ~K\biggl( \sqrt{ \frac{\cosh\xi-\sinh\xi }{\cosh\xi+\sinh\xi }} \biggr)
</math>
  </td>
</tr>
<tr>
  <td align="right">
<math>~\Rightarrow ~~~ \boldsymbol{Q}^{0}_{-\frac{1}{2}}\left(\cosh\xi\right)</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~\biggl[ \frac{\pi}{2\sinh\xi} \biggr]^{ 1 / 2}
\frac{2}{\pi} \biggl[\frac{2\sinh\xi }{\cosh\xi+\sinh\xi }\biggr]^{1 / 2} ~K\biggl( \sqrt{ \frac{\cosh\xi-\sinh\xi }{\cosh\xi+\sinh\xi }} \biggr)
</math>
  </td>
</tr>
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
\frac{2}{\sqrt{\pi}} \biggl[\frac{1 }{\cosh\xi+\sinh\xi }\biggr]^{1 / 2} ~K\biggl( \sqrt{ \frac{\cosh^2\xi-\sinh^2\xi }{(\cosh\xi+\sinh\xi)^2 }} \biggr)
</math>
  </td>
</tr>
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
\frac{2}{\sqrt{\pi}} \biggl[\frac{1 }{\cosh\xi+\sinh\xi }\biggr]^{1 / 2} ~K\biggl( \frac{1}{\cosh\xi+\sinh\xi } \biggr)
</math>
  </td>
</tr>
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
\frac{2}{\sqrt{\pi}} ~e^{-\xi/2} ~K( e^{-\xi}) \, ,
</math>
  </td>
</tr>
</table>
which, apart from the leading factor of <math>~\pi^{-1 / 2}</math>, exactly matches the above expression.
----
Note:  From [http://hcohl.sdf.org/WHIPPLE.html Howard Cohl's online overview] &#8212; see, also, [[#Overview_by_Howard_Cohl|below]] &#8212; we find that the Whipple formula is slightly different from the one (quoted above) drawn from DLMF.  According to Cohl the Whipple formula should be,
<table border="0" cellpadding="5" align="center">
<tr>
  <td align="right">
<math>~Q_{n- 1 / 2}^m(\cosh\alpha)</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
(-1)^m \Gamma (m - n + \tfrac{1}{2} )\biggl( \frac{\pi}{2\sinh\alpha} \biggr)^{1 / 2} P^{n}_{m - 1 / 2}(\coth\alpha) \, .
</math>
  </td>
</tr>
</table>
The DLMF expression needs to be multiplied by <math>~(-1)^m\Gamma (m + n + \tfrac{1}{2} )</math> in order to match the expression provided by Cohl; for the case being considered here of <math>~m=n=0</math>,  this factor is precisely <math>~\Gamma(\tfrac{1}{2}) = \sqrt{\pi}</math> &#8212; [https://en.wikipedia.org/wiki/Gamma_function#Properties see, for example, Wikipedia's discussion of the gamma function] &#8212; which cancels this confusing factor of <math>~\pi^{-1 / 2}</math>.
  </td>
</tr>
</tr>
</table>
</table>

Revision as of 18:01, 9 May 2018


Confusion Regarding Whipple Formulae

May, 2018 (J.E.Tohline): I am trying to figure out what the correct relationship is between half-integer degree, associated Legendre functions of the first and second kinds. In order to illustrate my current confusion, here I will restrict my presentation to expressions that give <math>~Q^m_{n - 1 / 2}(\cosh\eta)</math> in terms of <math>~P^n_{m - 1 / 2}(\coth\eta)</math>.


Whitworth's (1981) Isothermal Free-Energy Surface
|   Tiled Menu   |   Tables of Content   |  Banner Video   |  Tohline Home Page   |

Published Expressions

From equation (34) of H. S. Cohl, J. E. Tohline, A. R. P. Rau, & H. M. Srivastiva (2000, Astronomische Nachrichten, 321, no. 5, 363 - 372) I find:

<math>~Q^m_{n - 1 / 2}(\cosh\eta)</math>

<math>~=</math>

<math>~ \frac{(-1)^n \pi}{\Gamma(n - m + \tfrac{1}{2})} \biggl[ \frac{\pi}{2\sinh\eta} \biggr]^{1 / 2} P^n_{m - 1 / 2}(\coth\eta) \, . </math>


From Howard Cohl's online overview of toroidal functions, I find:

<math>~Q^n_{m- 1 / 2}(\cosh\alpha)</math>

<math>~=</math>

<math>~(-1)^n ~\Gamma(n-m + \tfrac{1}{2}) \biggl[ \frac{\pi}{2\sinh\alpha} \biggr]^{1 / 2} P^m_{n- 1 / 2}(\coth\alpha)\, , </math>

Copying the Whipple's formula from §14.19 of DLMF,

<math>~\boldsymbol{Q}^{m}_{n-\frac{1}{2}}\left(\cosh\xi\right)</math>

<math>~=</math>

<math>~ \frac{\Gamma\left(m-n+ \tfrac{1}{2}\right)}{\Gamma\left(m+n+\tfrac{1}{2}\right)}\left(\frac{\pi}{2 \sinh\xi}\right)^{1 / 2}P^{n}_{m-\frac{1}{2}}\left(\coth\xi\right) \, . </math>

As per equation (8) in A. Gil, J. Segura, & N. M. Temme (2000, JCP, 161, 204 - 217), the relationship is:

<math>~Q_{n-1 / 2}^m (\lambda)</math>

<math>~=</math>

<math>~(-1)^n \frac{\pi^{3/2}}{\sqrt{2} \Gamma(n-m+1 / 2)} (x^2-1)^{1 / 4} P_{m-1 / 2}^n(x) \, , </math>

where, <math>~\lambda \equiv x/\sqrt{x^2-1}</math>. This expression from Gil et al. (2000) means, for example, that by identifying <math>~x</math> with <math>~\coth\eta</math>, we have <math>~\lambda = \cosh\eta</math>, and,

<math>~Q_{n-1 / 2}^m (\cosh\eta)</math>

<math>~=</math>

<math>~(-1)^n \frac{\pi^{3/2}}{\sqrt{2} \Gamma(n-m+1 / 2)} (\coth^2\eta-1)^{1 / 4} P_{m-1 / 2}^n(\coth\eta) </math>

 

<math>~=</math>

<math>~ \frac{(-1)^n ~\pi}{\Gamma(n-m+1 / 2)} \biggl( \frac{\pi}{2}\biggr)^{1 / 2} \biggl[\frac{\cosh^2\eta}{\sinh^2\eta}-1 \biggr]^{1 / 4} P_{m-1 / 2}^n(\coth\eta) </math>

 

<math>~=</math>

<math>~ \frac{(-1)^n ~\pi}{\Gamma(n-m+1 / 2)} \biggl( \frac{\pi}{2}\biggr)^{1 / 2} \biggl[\frac{1}{\sinh\eta}\biggr]^{1 / 2} P_{m-1 / 2}^n(\coth\eta) </math>

 

<math>~=</math>

<math>~ \frac{(-1)^n ~\pi}{\Gamma(n-m+1 / 2)} \biggl[\frac{\pi}{2\sinh\eta}\biggr]^{1 / 2} P_{m-1 / 2}^n(\coth\eta) \, , </math>

which matches the above expression drawn from Cohl et al. (2000), but which does not match either of the other two "published" (online) expressions.

Specific Application

I stumbled into this dilemma when I tried to explicitly demonstrate how <math>~Q_{-1 / 2}(\cosh\eta)</math> can be derived from <math>~P_{-1 / 2}(z)</math> where, from §8.13 of M. Abramowitz & I. A. Stegun (1995), we find,

<math>~Q_{-1 / 2}(\cosh\eta)</math>

<math>~=</math>

<math>~2 e^{- \eta / 2} ~K(e^{-\eta} ) \, , </math>

Abramowitz & Stegun (1995), eq. (8.13.4)

and,

<math>~P_{-1 / 2}(z)</math>

<math>~=</math>

<math>~ \frac{2}{\pi} \biggl[\frac{2}{z+1}\biggr]^{1 / 2} ~K\biggl( \sqrt{ \frac{z-1}{z+1}} \biggr) \, . </math>

Abramowitz & Stegun (1995), eq. (8.13.1)


Proof that these are the same expressions:

Copying the Whipple's formula from §14.19 of DLMF,

<math>~\boldsymbol{Q}^{m}_{n-\frac{1}{2}}\left(\cosh\xi\right)</math>

<math>~=</math>

<math>~ \frac{\Gamma\left(m-n+ \tfrac{1}{2}\right)}{\Gamma\left(m+n+\tfrac{1}{2}\right)}\left(\frac{\pi}{2 \sinh\xi}\right)^{1 / 2}P^{n}_{m-\frac{1}{2}}\left(\coth\xi\right) \, , </math>

then setting <math>~m = n = 0</math>, we have,

<math>~\boldsymbol{Q}^{0}_{-\frac{1}{2}}\left(\cosh\xi\right)</math>

<math>~=</math>

<math>~ \frac{\Gamma\left(\tfrac{1}{2}\right)}{\Gamma\left(\tfrac{1}{2}\right)}\left(\frac{\pi}{2\sinh\xi}\right)^{1 / 2}P^{0}_{-\frac{1}{2}}\left(\coth\xi\right) \, . </math>

Step #1:   Associate … <math>z \leftrightarrow \cosh\xi</math>. Then,

<math>~\boldsymbol{Q}^{0}_{-\frac{1}{2}}\left(\cosh\xi\right)</math>

<math>~=</math>

<math>~ \biggl(\frac{\pi}{2} \biggr)^{1/2} \left[\frac{1}{\sqrt{z^2-1}}\right]^{1 / 2} P^{0}_{-\frac{1}{2}}\biggl( \frac{z}{\sqrt{z^2-1}} \biggr) \, . </math>

Step #2:   Now making the association … <math>\Lambda \leftrightarrow z/\sqrt{z^2-1}</math>, we can write,

<math>~P_{-1 / 2}(\Lambda)</math>

<math>~=</math>

<math>~ \frac{2}{\pi} \biggl[\frac{2}{\Lambda+1}\biggr]^{1 / 2} ~K\biggl( \sqrt{ \frac{\Lambda-1}{\Lambda+1}} \biggr) </math>

 

<math>~=</math>

<math>~ \frac{2}{\pi} \biggl[\frac{2\sqrt{z^2-1} }{z+\sqrt{z^2-1} }\biggr]^{1 / 2} ~K\biggl( \sqrt{ \frac{z-\sqrt{z^2-1} }{z+\sqrt{z^2-1} }} \biggr) \, . </math>

Step #3:   Again, making the association … <math>z \leftrightarrow \cosh\xi</math>, means,

<math>~P_{-1 / 2}(\Lambda)</math>

<math>~=</math>

<math>~ \frac{2}{\pi} \biggl[\frac{2\sinh\xi }{\cosh\xi+\sinh\xi }\biggr]^{1 / 2} ~K\biggl( \sqrt{ \frac{\cosh\xi-\sinh\xi }{\cosh\xi+\sinh\xi }} \biggr) </math>

<math>~\Rightarrow ~~~ \boldsymbol{Q}^{0}_{-\frac{1}{2}}\left(\cosh\xi\right)</math>

<math>~=</math>

<math>~\biggl[ \frac{\pi}{2\sinh\xi} \biggr]^{ 1 / 2} \frac{2}{\pi} \biggl[\frac{2\sinh\xi }{\cosh\xi+\sinh\xi }\biggr]^{1 / 2} ~K\biggl( \sqrt{ \frac{\cosh\xi-\sinh\xi }{\cosh\xi+\sinh\xi }} \biggr) </math>

 

<math>~=</math>

<math>~ \frac{2}{\sqrt{\pi}} \biggl[\frac{1 }{\cosh\xi+\sinh\xi }\biggr]^{1 / 2} ~K\biggl( \sqrt{ \frac{\cosh^2\xi-\sinh^2\xi }{(\cosh\xi+\sinh\xi)^2 }} \biggr) </math>

 

<math>~=</math>

<math>~ \frac{2}{\sqrt{\pi}} \biggl[\frac{1 }{\cosh\xi+\sinh\xi }\biggr]^{1 / 2} ~K\biggl( \frac{1}{\cosh\xi+\sinh\xi } \biggr) </math>

 

<math>~=</math>

<math>~ \frac{2}{\sqrt{\pi}} ~e^{-\xi/2} ~K( e^{-\xi}) \, , </math>

which, apart from the leading factor of <math>~\pi^{-1 / 2}</math>, exactly matches the above expression.


Note: From Howard Cohl's online overview — see, also, below — we find that the Whipple formula is slightly different from the one (quoted above) drawn from DLMF. According to Cohl the Whipple formula should be,

<math>~Q_{n- 1 / 2}^m(\cosh\alpha)</math>

<math>~=</math>

<math>~ (-1)^m \Gamma (m - n + \tfrac{1}{2} )\biggl( \frac{\pi}{2\sinh\alpha} \biggr)^{1 / 2} P^{n}_{m - 1 / 2}(\coth\alpha) \, . </math>

The DLMF expression needs to be multiplied by <math>~(-1)^m\Gamma (m + n + \tfrac{1}{2} )</math> in order to match the expression provided by Cohl; for the case being considered here of <math>~m=n=0</math>, this factor is precisely <math>~\Gamma(\tfrac{1}{2}) = \sqrt{\pi}</math> — see, for example, Wikipedia's discussion of the gamma function — which cancels this confusing factor of <math>~\pi^{-1 / 2}</math>.

See Also

Whitworth's (1981) Isothermal Free-Energy Surface

© 2014 - 2021 by Joel E. Tohline
|   H_Book Home   |   YouTube   |
Appendices: | Equations | Variables | References | Ramblings | Images | myphys.lsu | ADS |
Recommended citation:   Tohline, Joel E. (2021), The Structure, Stability, & Dynamics of Self-Gravitating Fluids, a (MediaWiki-based) Vistrails.org publication, https://www.vistrails.org/index.php/User:Tohline/citation