Difference between revisions of "User:Tohline/Appendix/Mathematics/ToroidalConfusion"

From VistrailsWiki
Jump to navigation Jump to search
Line 9: Line 9:




From [http://adsabs.harvard.edu/abs/2000AN....321..363C H. S. Cohl, J. E. Tohline, A. R. P. Rau, & H. M. Srivastiva (2000, Astronomische Nachrichten, 321, no. 5, 363 - 372)] I find:
From equation (34) of [http://adsabs.harvard.edu/abs/2000AN....321..363C H. S. Cohl, J. E. Tohline, A. R. P. Rau, & H. M. Srivastiva (2000, Astronomische Nachrichten, 321, no. 5, 363 - 372)] I find:
<table border="0" cellpadding="5" align="center">
<table border="0" cellpadding="5" align="center">


Line 27: Line 27:
</table>
</table>


From [http://hcohl.sdf.org/WHIPPLE.html Howard Cohl's online overview] of toroidal functions, I find:
<table border="0" cellpadding="5" align="center">
<tr>
  <td align="right">
<math>~Q^n_{m- 1 / 2}(\cosh\alpha)</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~(-1)^n
~\Gamma(n-m + \tfrac{1}{2}) \biggl[ \frac{\pi}{2\sinh\alpha} \biggr]^{1 / 2} P^m_{n- 1 / 2}(\coth\alpha)\, ,
</math>
  </td>
</tr>
</table>


=See Also=
=See Also=

Revision as of 15:54, 9 May 2018


Confusion Regarding Whipple Formulae

May, 2018 (J.E.Tohline): I am trying to figure out what the correct relationship is between half-integer degree, associated Legendre functions of the first and second kinds. In order to illustrate my current confusion, here I will restrict my presentation to expressions that give <math>~Q^m_{n - 1 / 2}(\cosh\eta)</math> in terms of <math>~P^n_{m - 1 / 2}(\coth\eta)</math>.


Whitworth's (1981) Isothermal Free-Energy Surface
|   Tiled Menu   |   Tables of Content   |  Banner Video   |  Tohline Home Page   |


From equation (34) of H. S. Cohl, J. E. Tohline, A. R. P. Rau, & H. M. Srivastiva (2000, Astronomische Nachrichten, 321, no. 5, 363 - 372) I find:

<math>~Q^m_{n - 1 / 2}(\cosh\eta)</math>

<math>~=</math>

<math>~ \frac{(-1)^n \pi}{\Gamma(n - m + \tfrac{1}{2})} \biggl[ \frac{\pi}{2\sinh\eta} \biggr]^{1 / 2} P^n_{m - 1 / 2}(\coth\eta) \, . </math>


From Howard Cohl's online overview of toroidal functions, I find:

<math>~Q^n_{m- 1 / 2}(\cosh\alpha)</math>

<math>~=</math>

<math>~(-1)^n ~\Gamma(n-m + \tfrac{1}{2}) \biggl[ \frac{\pi}{2\sinh\alpha} \biggr]^{1 / 2} P^m_{n- 1 / 2}(\coth\alpha)\, , </math>

See Also

Whitworth's (1981) Isothermal Free-Energy Surface

© 2014 - 2021 by Joel E. Tohline
|   H_Book Home   |   YouTube   |
Appendices: | Equations | Variables | References | Ramblings | Images | myphys.lsu | ADS |
Recommended citation:   Tohline, Joel E. (2021), The Structure, Stability, & Dynamics of Self-Gravitating Fluids, a (MediaWiki-based) Vistrails.org publication, https://www.vistrails.org/index.php/User:Tohline/citation