Difference between revisions of "User:Tohline/Appendix/CGH/Overview"

From VistrailsWiki
Jump to navigation Jump to search
(Created page with '<!-- __FORCETOC__ will force the creation of a Table of Contents --> <!-- __NOTOC__ will force TOC off --> =CGH: Philosophical Overview= {{LSU_HBook_header}} ==Propagation of…')
 
Line 3: Line 3:
=CGH:  Philosophical Overview=
=CGH:  Philosophical Overview=


{{LSU_HBook_header}}


{{LSU_HBook_header}}
==Slit Diffraction==
===Single Aperture===
<table border="0" cellpadding="10" align="right"><tr><td align="center">
<table border="1" cellpadding="5">
<tr>
  <th align="center">Figure 1</th>
</tr>
<tr>
  <td align="center" bgcolor="lightgreen">[[File:Aperture3.gif|350px|Chapter1Fig1]]</td>
</tr>
</table>
</td></tr></table>
As has been detailed in an [[User:Tohline/Appendix/CGH/ParallelApertures#One-Dimensional_Aperture|accompanying discussion]], we consider, first, the amplitude (and phase) of light that is incident at a location <math>~y_1</math> on an image screen that is located a distance <math>~Z</math> from a slit of width <math>~w = (Y_1 - Y_2) = 2c</math>.  The amplitude is given by the expression,
<div align="center">
<table border="0" cellpadding="5" align="center">
 
<tr>
  <td align="right">
<math>~A(y_1)</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~\sum_j
a_j \biggl[ \cos\biggl(\frac{2\pi D_j}{\lambda} + \phi_j \biggr) + i  \sin\biggl(\frac{2\pi D_j}{\lambda} + \phi_j \biggr) \biggr]
\, ,
</math>
  </td>
</tr>
</table>
</div>
where,
<div align="center" id="Distance">
<table border="0" cellpadding="5" align="center">


==Propagation of Light==
<tr>
  <td align="right">
<math>~D_j</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
L \biggl[1 - \frac{2y_1 Y_j}{L^2} + \frac{Y_j^2}{L^2} \biggr]^{1 / 2} \, ,
</math>
  </td>
</tr>
</table>
</div>
and,
<div align="center">
<table border="0" cellpadding="5" align="center">


<tr>
  <td align="right">
<math>~L</math>
  </td>
  <td align="center">
<math>~\equiv</math>
  </td>
  <td align="left">
<math>~
[Z^2 + y_1^2  ]^{1 / 2} \, .
</math>
  </td>
</tr>
</table>
</div>


=See Also=
=See Also=

Revision as of 04:25, 28 December 2017

CGH: Philosophical Overview

Whitworth's (1981) Isothermal Free-Energy Surface
|   Tiled Menu   |   Tables of Content   |  Banner Video   |  Tohline Home Page   |

Slit Diffraction

Single Aperture

Figure 1
Chapter1Fig1

As has been detailed in an accompanying discussion, we consider, first, the amplitude (and phase) of light that is incident at a location <math>~y_1</math> on an image screen that is located a distance <math>~Z</math> from a slit of width <math>~w = (Y_1 - Y_2) = 2c</math>. The amplitude is given by the expression,

<math>~A(y_1)</math>

<math>~=</math>

<math>~\sum_j a_j \biggl[ \cos\biggl(\frac{2\pi D_j}{\lambda} + \phi_j \biggr) + i \sin\biggl(\frac{2\pi D_j}{\lambda} + \phi_j \biggr) \biggr] \, , </math>

where,

<math>~D_j</math>

<math>~=</math>

<math>~ L \biggl[1 - \frac{2y_1 Y_j}{L^2} + \frac{Y_j^2}{L^2} \biggr]^{1 / 2} \, , </math>

and,

<math>~L</math>

<math>~\equiv</math>

<math>~ [Z^2 + y_1^2 ]^{1 / 2} \, . </math>

See Also


Whitworth's (1981) Isothermal Free-Energy Surface

© 2014 - 2021 by Joel E. Tohline
|   H_Book Home   |   YouTube   |
Appendices: | Equations | Variables | References | Ramblings | Images | myphys.lsu | ADS |
Recommended citation:   Tohline, Joel E. (2021), The Structure, Stability, & Dynamics of Self-Gravitating Fluids, a (MediaWiki-based) Vistrails.org publication, https://www.vistrails.org/index.php/User:Tohline/citation