Difference between revisions of "User:Tohline/SSC/IsothermalSimilaritySolution"

From VistrailsWiki
Jump to navigation Jump to search
(Created page with '<!-- __FORCETOC__ will force the creation of a Table of Contents --> <!-- __NOTOC__ will force TOC off --> =Similarity Solution= {{LSU_HBook_header}} ==Establishing Set of Gov…')
 
Line 5: Line 5:
{{LSU_HBook_header}}
{{LSU_HBook_header}}


Several authors (references given, below) have shown that when isothermal pressure gradients are important during a gas cloud's collapse, the equations governing the collapse admit a set of similarity solutions.  Certain properties of these solutions can be described analytically and are instructive models for comparison with more detailed, numerical collapse calculations.


==Establishing Set of Governing Equations==
==Establishing Set of Governing Equations==
Line 100: Line 102:
</table>
</table>
</div>
</div>


=See Especially=
=See Especially=

Revision as of 03:43, 9 July 2017

Similarity Solution

Whitworth's (1981) Isothermal Free-Energy Surface
|   Tiled Menu   |   Tables of Content   |  Banner Video   |  Tohline Home Page   |


Several authors (references given, below) have shown that when isothermal pressure gradients are important during a gas cloud's collapse, the equations governing the collapse admit a set of similarity solutions. Certain properties of these solutions can be described analytically and are instructive models for comparison with more detailed, numerical collapse calculations.

Establishing Set of Governing Equations

Accompanying chapter discussion

The lefthand side of the two equations containing time derivatives will take a different form if, alternatively, the choice is made to view the evolution from an Eulerian frame of reference. In this case the set of governing equations becomes,

Eulerian Frame

<math>~\frac{\partial M_r}{\partial r} </math>

<math>~=</math>

<math>~4\pi r^2 \rho \, , </math>

<math>~\frac{\partial M_r}{\partial t} </math>

<math>~=</math>

<math>~- 4\pi r^2 \rho v_r \, ,</math>

<math>~\frac{\partial v_r}{\partial t} + v_r \frac{\partial v_r}{\partial r}</math>

<math>~=</math>

<math>~- c_s^2 \biggl( \frac{\partial \ln \rho}{\partial r}\biggr) - \frac{GM_r}{r^2} \, .</math>

Notice that, in place of the standard continuity equation, we will use the following equivalent statement of mass conservation:

<math>~\frac{dM_r}{dt}</math>

<math>~=</math>

<math>~0 </math>

<math>~\Rightarrow ~~~ 0</math>

<math>~=</math>

<math>~\frac{\partial M_r}{\partial t} + v_r ~\frac{\partial M_r}{\partial r} </math>

 

<math>~=</math>

<math>~\frac{\partial M_r}{\partial t} +4\pi r^2 \rho v_r \, .</math>

See Especially


Whitworth's (1981) Isothermal Free-Energy Surface

© 2014 - 2021 by Joel E. Tohline
|   H_Book Home   |   YouTube   |
Appendices: | Equations | Variables | References | Ramblings | Images | myphys.lsu | ADS |
Recommended citation:   Tohline, Joel E. (2021), The Structure, Stability, & Dynamics of Self-Gravitating Fluids, a (MediaWiki-based) Vistrails.org publication, https://www.vistrails.org/index.php/User:Tohline/citation