Difference between revisions of "User:Tohline/SSC/IsothermalCollapse"

From VistrailsWiki
Jump to navigation Jump to search
(Created page with '<!-- __FORCETOC__ will force the creation of a Table of Contents --> <!-- __NOTOC__ will force TOC off --> =Collapse of Isothermal Spheres= {{LSU_HBook_header}} We begin with …')
 
Line 40: Line 40:
* [http://adsabs.harvard.edu/abs/1985MNRAS.214....1W A. Whitworth &amp; D. Summers (1985, MNRAS, 214, 1 - 25)]:&nbsp; ''Self-Similar Condensation of Spherically Symmetric Self-Gravitting Isothermal Gas Clouds''
* [http://adsabs.harvard.edu/abs/1985MNRAS.214....1W A. Whitworth &amp; D. Summers (1985, MNRAS, 214, 1 - 25)]:&nbsp; ''Self-Similar Condensation of Spherically Symmetric Self-Gravitting Isothermal Gas Clouds''
* [http://adsabs.harvard.edu/abs/1993ApJ...416..303F Prudence N. Foster &amp; Roger A. Chevalier (1993, ApJ, 416, 303)]: &nbsp; ''Gravitational Collapse of an Isothermal Sphere''
* [http://adsabs.harvard.edu/abs/1993ApJ...416..303F Prudence N. Foster &amp; Roger A. Chevalier (1993, ApJ, 416, 303)]: &nbsp; ''Gravitational Collapse of an Isothermal Sphere''
* [http://adsabs.harvard.edu/abs/2013RMxAA..49..127R A. C. Raga, J. C. Rodr&iacute;guez-Ram&iacute;rez, A. Rodr&iacute;guez-Gonz&aacute;lez, V. Lora, &amp; A. Esquivel (2013, Revista Mexicana de Astronom&iacute;a y Astrof&iacute;sica, 49, 127-135)]: &nbsp; ''Analytic and Numerical Calculations of the Radial Stability of the Isothermal Spheres''






{{LSU_HBook_footer}}
{{LSU_HBook_footer}}

Revision as of 16:37, 7 July 2017

Collapse of Isothermal Spheres

Whitworth's (1981) Isothermal Free-Energy Surface
|   Tiled Menu   |   Tables of Content   |  Banner Video   |  Tohline Home Page   |


We begin with the set of time-dependent governing equations for spherically symmetric systems, namely,

Equation of Continuity

<math>\frac{d\rho}{dt} + \rho \biggl[\frac{1}{r^2}\frac{d(r^2 v_r)}{dr} \biggr] = 0 </math>


Euler Equation

<math>\frac{dv_r}{dt} = - \frac{1}{\rho}\frac{dP}{dr} - \frac{d\Phi}{dr} </math>


Poisson Equation

<math>\frac{1}{r^2} \biggl[\frac{d }{dr} \biggl( r^2 \frac{d \Phi}{dr} \biggr) \biggr] = 4\pi G \rho \, ,</math>

but, in place of the adiabatic form of the 1st Law of Thermodynamics, we enforce isothermality both in space and time by adopting the isothermal equation of state,

<math>~P = c_s^2 \rho \, ,</math>

where, <math>~c_s</math>, is the isothermal sound speed.


See Especially


Whitworth's (1981) Isothermal Free-Energy Surface

© 2014 - 2021 by Joel E. Tohline
|   H_Book Home   |   YouTube   |
Appendices: | Equations | Variables | References | Ramblings | Images | myphys.lsu | ADS |
Recommended citation:   Tohline, Joel E. (2021), The Structure, Stability, & Dynamics of Self-Gravitating Fluids, a (MediaWiki-based) Vistrails.org publication, https://www.vistrails.org/index.php/User:Tohline/citation