Difference between revisions of "User:Tohline/SR/PoissonOrigin"
Line 1: | Line 1: | ||
__FORCETOC__ | __FORCETOC__ | ||
=Origin of the Poisson Equation= | =Origin of the Poisson Equation= | ||
In deriving the, | |||
<div align="center"> | <div align="center"> | ||
<span id="PGE:Poisson"><font color="#770000">'''Poisson Equation'''</font></span><br /> | <span id="PGE:Poisson"><font color="#770000">'''Poisson Equation'''</font></span><br /> | ||
Line 9: | Line 8: | ||
{{User:Tohline/Math/EQ_Poisson01}} | {{User:Tohline/Math/EQ_Poisson01}} | ||
</div> | </div> | ||
we will follow closely the presentation found in §2.1 of [<b>[[User:Tohline/Appendix/References#BT87|<font color="red">BT87</font>]]</b>]. | |||
{{LSU_HBook_header}} | |||
<font color="#007700">According to Isaac Newton's inverse-square law of gravitation,</font> the acceleration, <math>~\vec{a}(\vec{x})</math>, felt at any point in space, <math>~\vec{x}</math>, due to the gravitational attraction of a distribution of mass, <math>~\rho(\vec{x})</math>, is obtained by integrating over the accelerations exerted by each small mass element, <math>~\rho( | <font color="#007700">According to Isaac Newton's inverse-square law of gravitation,</font> the acceleration, <math>~\vec{a}(\vec{x})</math>, felt at any point in space, <math>~\vec{x}</math>, due to the gravitational attraction of a distribution of mass, <math>~\rho(\vec{x})</math>, is obtained by integrating over the accelerations exerted by each small mass element, <math>~\rho(\vec{x}^{~'}) d^3x'</math>, as follows: | ||
<div align="center"> | <div align="center"> | ||
<table border="0" cellpadding="5" align="center"> | <table border="0" cellpadding="5" align="center"> | ||
Line 24: | Line 26: | ||
<td align="left"> | <td align="left"> | ||
<math>~ | <math>~ | ||
\int \biggl[\frac{ | \int \biggl[\frac{\vec{x}^{~'} - \vec{x}}{|\vec{x}^{~'} - \vec{x}|^3}\biggr] G\rho(\vec{x}^{~'}) d^3 x' \, , | ||
</math> | </math> | ||
</td> | |||
</tr> | |||
<tr> | |||
<td align="center" colspan="3"> | |||
[<b>[[User:Tohline/Appendix/References#BT87|<font color="red">BT87</font>]]</b>], p. 31, Eq. (2-2) | |||
</td> | |||
</tr> | |||
</table> | |||
</div> | |||
where, {{ User:Tohline/Math/C_GravitationalConstant }} is the Newtonian gravitational constant. | |||
Now, in the astrophysics literature, it is customary to adopt the following definition of the, | |||
<div align="center" id="GravitationalPotential"> | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="center" colspan="3"> | |||
<font color="#770000">'''Scalar Gravitational Potential'''</font> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
<math>~ \Phi</math> | |||
</td> | |||
<td align="center"> | |||
<math>~\equiv</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ -G \int\limits_V \frac{\rho(\vec{x}^{~'})}{|\vec{x}^{~'} - \vec{x}|} d^3x^' \, .</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="center" colspan="3"> | |||
[<b>[[User:Tohline/Appendix/References#BT87|<font color="red">BT87</font>]]</b>], p. 31, Eq. (2-3) | |||
</td> | </td> | ||
</tr> | </tr> | ||
</table> | </table> | ||
</div> | </div> | ||
[Note that, as we have detailed in a [[User:Tohline/VE#Setting_the_Stage|separate discussion]], throughout [<b>[[User:Tohline/Appendix/References#EFE|<font color="red">EFE</font>]]</b>] Chandrasekhar adopts a ''different sign convention'' as well as a different variable name to represent the gravitational potential.] | |||
=Drawn from Other Wiki Pages= | =Drawn from Other Wiki Pages= |
Revision as of 22:38, 5 July 2017
Origin of the Poisson Equation
In deriving the,
we will follow closely the presentation found in §2.1 of [BT87].
| Tiled Menu | Tables of Content | Banner Video | Tohline Home Page | |
According to Isaac Newton's inverse-square law of gravitation, the acceleration, <math>~\vec{a}(\vec{x})</math>, felt at any point in space, <math>~\vec{x}</math>, due to the gravitational attraction of a distribution of mass, <math>~\rho(\vec{x})</math>, is obtained by integrating over the accelerations exerted by each small mass element, <math>~\rho(\vec{x}^{~'}) d^3x'</math>, as follows:
<math>~\vec{a}(\vec{x})</math> |
<math>~=</math> |
<math>~ \int \biggl[\frac{\vec{x}^{~'} - \vec{x}}{|\vec{x}^{~'} - \vec{x}|^3}\biggr] G\rho(\vec{x}^{~'}) d^3 x' \, , </math> |
[BT87], p. 31, Eq. (2-2) |
where, <math>~G</math> is the Newtonian gravitational constant.
Now, in the astrophysics literature, it is customary to adopt the following definition of the,
Scalar Gravitational Potential |
||
<math>~ \Phi</math> |
<math>~\equiv</math> |
<math>~ -G \int\limits_V \frac{\rho(\vec{x}^{~'})}{|\vec{x}^{~'} - \vec{x}|} d^3x^' \, .</math> |
[BT87], p. 31, Eq. (2-3) |
[Note that, as we have detailed in a separate discussion, throughout [EFE] Chandrasekhar adopts a different sign convention as well as a different variable name to represent the gravitational potential.]
Drawn from Other Wiki Pages
It is clear, therefore, that Chandrasekhar uses the variable <math>~\vec{u}</math> instead of <math>~\vec{v}</math> to represent the inertial velocity field. More importantly, he adopts a different variable name and a different sign convention to represent the gravitational potential, specifically,
<math>~ - \Phi = \mathfrak{B} </math> |
<math>~=</math> |
<math>~ G \int\limits_V \frac{\rho(\vec{x}^{~'})}{|\vec{x} - \vec{x}^{~'}|} d^3x^' \, .</math> |
Hence, care must be taken to ensure that the signs on various mathematical terms are internally consistent when mapping derivations and resulting expressions from [EFE] into this H_Book.
… which expresses simply the conservation of the angular momentum of the system. The symmetric part of the tensor expression gives what is generally referred to as (see [EFE] for details) the,
Tensor Virial Equation
<math>~\frac{1}{2} \frac{d^2 I_{ij}}{dt^2}</math> |
<math>~=</math> |
<math>~2 \mathfrak{T}_{ij} + \mathfrak{W}_{ij} + \delta_{ij}\Pi \, ,</math> |
See Also
© 2014 - 2021 by Joel E. Tohline |