|
|
Line 2: |
Line 2: |
| <!-- __NOTOC__ will force TOC off --> | | <!-- __NOTOC__ will force TOC off --> |
|
| |
|
| =Spherically Symmetric Configurations Synopsis= | | =Spherically Symmetric Configurations Synopsis (Using Style Sheet)= |
|
| |
|
| {{LSU_HBook_header}} | | {{LSU_HBook_header}} |
|
| |
|
|
| |
|
| ==New Table Construction==
| |
|
| |
|
| <p></p>
| |
| {| class="wikitable" style="margin: auto; color:black; width:85%;" border="1" cellpadding="12" | | {| class="wikitable" style="margin: auto; color:black; width:85%;" border="1" cellpadding="12" |
| |+ style="height:30px;" | <font size="+1">'''Spherically Symmetric Configurations that undergo Adiabatic Compression/Expansion'''</font> — adiabatic index, <math>~\gamma</math> | | |+ style="height:30px;" | <font size="+1">'''Spherically Symmetric Configurations that undergo Adiabatic Compression/Expansion'''</font> — adiabatic index, <math>~\gamma</math> |
Line 413: |
Line 411: |
| |} | | |} |
|
| |
|
|
| |
| ==Old Table Construction==
| |
| <table border="1" cellpadding="8" width="85%" align="center">
| |
| <tr>
| |
| <td align="center" colspan="2" bgcolor="lightgreen">
| |
| <font size="+1"><b>Spherically Symmetric Configurations that undergo Adiabatic Compression/Expansion</b></font> — adiabatic index, <math>~\gamma</math>
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td align="center" colspan="2">
| |
| <table border="0" cellpadding="5" align="center">
| |
| <tr>
| |
| <td align="right">
| |
| <math>~dV = 4\pi r^2 dr</math>
| |
| </td>
| |
| <td align="center">
| |
| and
| |
| </td>
| |
| <td align="left">
| |
| <math>~dM_r = \rho dV ~~~\Rightarrow ~~~M_r = 4\pi \int_0^r \rho r^2 dr</math>
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td align="right">
| |
| <math>~W_\mathrm{grav}</math>
| |
| </td>
| |
| <td align="center">
| |
| <math>~=</math>
| |
| </td>
| |
| <td align="left">
| |
| <math>~- \int_0^R \biggl(\frac{GM_r}{r}\biggr) dM_r ~~ \propto ~~ R^{-1}</math>
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td align="right">
| |
| <math>~U_\mathrm{int}</math>
| |
| </td>
| |
| <td align="center">
| |
| <math>~=</math>
| |
| </td>
| |
| <td align="left">
| |
| <math>~\frac{1}{(\gamma -1)} \int_0^R 4\pi r^2 P dr ~~ \propto ~~ R^{3-3\gamma}</math>
| |
| </td>
| |
| </tr>
| |
| </table>
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td align="center" colspan="2" bgcolor="lightgreen">
| |
| <font size="+1"><b>Equilibrium Structure</b></font>
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <th align="center" width="50%">
| |
| Detailed Force Balance
| |
| </th>
| |
| <th align="center">
| |
| Free-Energy Analysis
| |
| </th>
| |
| </tr>
| |
|
| |
| <!-- BEGIN MAJOR 4th ROW -->
| |
| <tr>
| |
| <!-- FIRST COLUMN -->
| |
| <td align="left">
| |
| <table border="0" cellpadding="5" align="left">
| |
| <tr>
| |
| <td align="left">
| |
| Given a barotropic equation of state, <math>~P(\rho)</math>, solve the equation of
| |
| <div align="center">
| |
| <font color="maroon"><b>Hydrostatic Balance</b></font><br />
| |
| {{ User:Tohline/Math/EQ_SShydrostaticBalance01 }}
| |
| </div>
| |
| for the radial density distribution, <math>~\rho(r)</math>.
| |
| </td>
| |
| </tr>
| |
| </table>
| |
| </td>
| |
| <!-- THIRD COLUMN -->
| |
| <td align="left" rowspan="3">
| |
| The Free-Energy is,
| |
| <table border="0" cellpadding="5" align="center">
| |
| <tr>
| |
| <td align="right">
| |
| <math>~\mathfrak{G}</math>
| |
| </td>
| |
| <td align="center">
| |
| <math>~=</math>
| |
| </td>
| |
| <td align="left">
| |
| <math>~W_\mathrm{grav} + U_\mathrm{int} + P_eV</math>
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td align="right">
| |
|
| |
| </td>
| |
| <td align="center">
| |
| <math>~=</math>
| |
| </td>
| |
| <td align="left">
| |
| <math>~-a R^{-1} + bR^{3-3\gamma}+ cR^3 \, .</math>
| |
| </td>
| |
| </tr>
| |
| </table>
| |
| Therefore, also,
| |
| <table border="0" cellpadding="5" align="center">
| |
| <tr>
| |
| <td align="right">
| |
| <math>~\frac{d\mathfrak{G}}{dR}</math>
| |
| </td>
| |
| <td align="center">
| |
| <math>~=</math>
| |
| </td>
| |
| <td align="left">
| |
| <math>~aR^{-2} +(3-3\gamma)bR^{2-3\gamma} + 3cR^2</math>
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td align="right">
| |
|
| |
| </td>
| |
| <td align="center">
| |
| <math>~=</math>
| |
| </td>
| |
| <td align="left">
| |
| <math>~\frac{1}{R}\biggl[ -W_\mathrm{grav} - 3(\gamma-1)U_\mathrm{int} + 3P_eV\biggr]</math>
| |
| </td>
| |
| </tr>
| |
| </table>
| |
| Equilibrium configurations exist at extrema of the free-energy function, that is, they are identified by setting <math>~d\mathfrak{G}/dR = 0</math>. Hence, equilibria are defined by the condition,
| |
| <table border="0" cellpadding="5" align="center">
| |
| <tr>
| |
| <td align="right">
| |
| <math>~0</math>
| |
| </td>
| |
| <td align="center">
| |
| <math>~=</math>
| |
| </td>
| |
| <td align="left">
| |
| <math>~W_\mathrm{grav} + 3(\gamma-1)U_\mathrm{int} - 3P_eV\, .</math>
| |
| </td>
| |
| </tr>
| |
| </table>
| |
| </td>
| |
| </tr>
| |
| <!-- END MAJOR 4th ROW -->
| |
| <tr>
| |
| <th align="center">Virial Equilibrium</th>
| |
| </tr>
| |
| <tr>
| |
| <td align="left">
| |
| <table border="0" cellpadding="5" align="left">
| |
| <tr>
| |
| <td align="left">
| |
| Multiply the hydrostatic-balance equation through by <math>~rdV</math> and integrate over the volume:
| |
| <table border="0" cellpadding="5" align="center">
| |
| <tr>
| |
| <td align="right">
| |
| <math>~0</math>
| |
| </td>
| |
| <td align="center">
| |
| <math>~=</math>
| |
| </td>
| |
| <td align="left">
| |
| <math>~-\int_0^R r\biggl(\frac{dP}{dr}\biggr)dV - \int_0^R r\biggl(\frac{GM_r \rho}{r^2}\biggr)dV</math>
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td align="right">
| |
|
| |
| </td>
| |
| <td align="center">
| |
| <math>~=</math>
| |
| </td>
| |
| <td align="left">
| |
| <math>~-\int_0^R 4\pi r^3 \biggl(\frac{dP}{dr}\biggr) dr - \int_0^R \biggl(\frac{GM_r}{r}\biggr)dM_r</math>
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td align="right">
| |
|
| |
| </td>
| |
| <td align="center">
| |
| <math>~=</math>
| |
| </td>
| |
| <td align="left">
| |
| <math>~-\int_0^R\biggl[ \frac{d}{dr}\biggl( 4\pi r^3P \biggr) - 12\pi r^2 P\biggr] dr + W_\mathrm{grav}</math>
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td align="right">
| |
|
| |
| </td>
| |
| <td align="center">
| |
| <math>~=</math>
| |
| </td>
| |
| <td align="left">
| |
| <math>~\int_0^R 3\biggl[ 4\pi r^2 P \biggr]dr - \int_0^R \biggl[ d(3PV)\biggr] + W_\mathrm{grav}</math>
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td align="right">
| |
|
| |
| </td>
| |
| <td align="center">
| |
| <math>~=</math>
| |
| </td>
| |
| <td align="left">
| |
| <math>~3(\gamma-1)U_\mathrm{int} + W_\mathrm{grav} - \biggl[ 3PV \biggr]_0^R \, .</math>
| |
| </td>
| |
| </tr>
| |
| </table>
| |
| </td>
| |
| </tr>
| |
| </table>
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td align="center" colspan="2" bgcolor="lightgreen">
| |
| <font size="+1"><b>Stability Analysis</b></font>
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <th align="center" width="50%">
| |
| Perturbation Theory
| |
| </th>
| |
| <th align="center">
| |
| Free-Energy Analysis
| |
| </th>
| |
| </tr>
| |
| <!-- BEGIN MAJOR STABILITY ROW -->
| |
| <tr>
| |
| <!-- BEGIN 1ST LEFT STABILITY COLUMN -->
| |
| <td align="left">
| |
| Given the radial profile of the density and pressure in the equilibrium configuration, solve the [[User:Tohline/SSC/VariationalPrinciple#Ledoux_and_Pekeris_.281941.29|eigenvalue problem defined]] by the,
| |
| <div align="center">
| |
| <font color="#770000">'''LAWE: Linear Adiabatic Wave''' (or ''Radial Pulsation'') '''Equation'''</font><br />
| |
| <table border="0" cellpadding="5" align="center">
| |
|
| |
| <tr>
| |
| <td align="right">
| |
| <math>~0</math>
| |
| </td>
| |
| <td align="center">
| |
| <math>~=</math>
| |
| </td>
| |
| <td align="left">
| |
| <math>~
| |
| \frac{d}{dr}\biggl[ r^4 \gamma P ~\frac{dx}{dr} \biggr]
| |
| +\biggl[ \omega^2 \rho r^4 + (3\gamma - 4) r^3 \frac{dP}{dr} \biggr] x
| |
| </math>
| |
| </td>
| |
| </tr>
| |
| </table>
| |
| </div>
| |
| to find one or more radially dependent, radial-displacement eigenvectors, <math>~x \equiv \delta r/r</math>, along with (the square of) the corresponding oscillation eigenfrequency, <math>~\omega^2</math>.
| |
| </td>
| |
| <!-- END 1ST LEFT STABILITY COLUMN -->
| |
| <!-- BEGIN 1ST RIGHT STABILITY COLUMN -->
| |
| <td align="left" rowspan="5">
| |
| The second derivative of the free-energy function is,
| |
| <table border="0" cellpadding="5" align="center">
| |
| <tr>
| |
| <td align="right">
| |
| <math>~\frac{d^2 \mathfrak{G}}{dR^2}</math>
| |
| </td>
| |
| <td align="center">
| |
| <math>~=</math>
| |
| </td>
| |
| <td align="left">
| |
| <math>~
| |
| -2aR^{-3} + (3-3\gamma)(2-3\gamma)b R^{1-3\gamma} + 6cR
| |
| </math>
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td align="right">
| |
|
| |
| </td>
| |
| <td align="center">
| |
| <math>~=</math>
| |
| </td>
| |
| <td align="left">
| |
| <math>~\frac{1}{R^2}\biggl[
| |
| 2W_\mathrm{grav} - 3(\gamma-1)(2-3\gamma)U_\mathrm{int} + 6P_e V
| |
| \biggr] \, .
| |
| </math>
| |
| </td>
| |
| </tr>
| |
| </table>
| |
| Evaluating this second derivative for an equilibrium configuration — that is by calling upon the (virial) equilibrium condition to set the value of the internal energy — we have,
| |
| <table border="0" cellpadding="5" align="center">
| |
|
| |
| <tr>
| |
| <td align="right">
| |
| <math>~3(\gamma-1)U_\mathrm{int}</math>
| |
| </td>
| |
| <td align="center">
| |
| <math>~=</math>
| |
| </td>
| |
| <td align="left">
| |
| <math>~3P_e V - W_\mathrm{grav} </math>
| |
| </td>
| |
| </tr>
| |
|
| |
| <tr>
| |
| <td align="right">
| |
| <math>~\Rightarrow~~~ R^2 \biggl[\frac{d^2\mathfrak{G}}{dR^2}\biggr]_\mathrm{equil}</math>
| |
| </td>
| |
| <td align="center">
| |
| <math>~=</math>
| |
| </td>
| |
| <td align="left">
| |
| <math>~2W_\mathrm{grav} - (2-3\gamma)\biggl[3P_e V - W_\mathrm{grav} \biggr] + 6P_e V
| |
| </math>
| |
| </td>
| |
| </tr>
| |
|
| |
| <tr>
| |
| <td align="right">
| |
|
| |
| </td>
| |
| <td align="center">
| |
| <math>~=</math>
| |
| </td>
| |
| <td align="left">
| |
| <math>~(4-3\gamma)W_\mathrm{grav} + 3^2\gamma P_e V \, .
| |
| </math>
| |
| </td>
| |
| </tr>
| |
| </table>
| |
| </td>
| |
| <!-- END 1ST RIGHT STABILITY COLUMN -->
| |
| </tr>
| |
| <tr>
| |
| <th align="center" width="50%">
| |
| Variational Principle
| |
| </th>
| |
| </tr>
| |
|
| |
| <!-- BEGIN ANOTHER MAJOR STABILITY ROW -->
| |
| <tr>
| |
| <!-- BEGIN 2ND LEFT STABILITY COLUMN -->
| |
| <td align="left">
| |
| Multiply the LAWE through by <math>~4\pi x dr</math>, and integrate over the volume of the configuration gives the,
| |
| <div align="center">
| |
| <font color="#770000">'''Governing Variational Relation</font><br />
| |
| <table border="0" cellpadding="5" align="center">
| |
|
| |
| <tr>
| |
| <td align="right">
| |
| <math>~0</math>
| |
| </td>
| |
| <td align="center">
| |
| <math>~=</math>
| |
| </td>
| |
| <td align="left">
| |
| <math>~
| |
| \int_0^R 4\pi r^4 \gamma P \biggl(\frac{dx}{dr}\biggr)^2 dr
| |
| - \int_0^R 4\pi (3\gamma - 4) r^3 x^2 \biggl( \frac{dP}{dr} \biggr) dr
| |
| </math>
| |
| </td>
| |
| </tr>
| |
|
| |
| <tr>
| |
| <td align="right">
| |
|
| |
| </td>
| |
| <td align="center">
| |
|
| |
| </td>
| |
| <td align="left">
| |
| <math>~
| |
| - 4\pi \biggr[r^4 \gamma Px \biggl(\frac{dx}{dr}\biggr) \biggr]_0^R
| |
| - \int_0^R 4\pi \omega^2 \rho r^4 x^2 dr \, .
| |
| </math>
| |
| </td>
| |
| </tr>
| |
|
| |
| <tr>
| |
| <td align="right">
| |
|
| |
| </td>
| |
| <td align="center">
| |
| <math>~=</math>
| |
| </td>
| |
| <td align="left">
| |
| <math>~
| |
| \int_0^R x^2 \biggl(\frac{d\ln x}{d\ln r}\biggr)^2 \gamma 4\pi r^2P dr
| |
| - \int_0^R (3\gamma - 4)x^2 \biggl( - \frac{GM_r}{r} \biggr) 4\pi \rho r^2 dr
| |
| </math>
| |
| </td>
| |
| </tr>
| |
|
| |
| <tr>
| |
| <td align="right">
| |
|
| |
| </td>
| |
| <td align="center">
| |
|
| |
| </td>
| |
| <td align="left">
| |
| <math>~
| |
| + \biggr[\gamma 4\pi r^3 Px^2 \biggl(-\frac{d\ln x}{d\ln r}\biggr) \biggr]_0^R
| |
| - \int_0^R 4\pi \omega^2 \rho r^4 x^2 dr \, .
| |
| </math>
| |
| </td>
| |
| </tr>
| |
| </table>
| |
| </div>
| |
| Now, by setting <math>~(d\ln x/d\ln r)_{r=R} = -3</math>, we can ensure that the pressure fluctuation is zero and, hence, <math>~P = P_e</math> at the surface, in which case this relation becomes,
| |
|
| |
| <div align="center">
| |
| <table border="0" cellpadding="5" align="center">
| |
| <tr>
| |
| <td align="right">
| |
| <math>~\omega^2</math>
| |
| </td>
| |
| <td align="center">
| |
| <math>~=</math>
| |
| </td>
| |
| <td align="left">
| |
| <math>~
| |
| \frac{\gamma (\gamma -1) \int_0^R x^2 \bigl(\frac{d\ln x}{d\ln r}\bigr)^2 dU_\mathrm{int}
| |
| - \int_0^R (3\gamma - 4)x^2 dW_\mathrm{grav}
| |
| + 3^2 \gamma x^2 P_eV}{ \int_0^R x^2 r^2 dM_r}
| |
| </math>
| |
| </td>
| |
| </tr>
| |
| </table>
| |
| </div>
| |
|
| |
| </td>
| |
| <!-- END 1ST LEFT STABILITY COLUMN -->
| |
| </tr>
| |
| <tr>
| |
| <th align="center" width="50%">
| |
| Approximation: Homologous Expansion/Contraction
| |
| </th>
| |
| </tr>
| |
|
| |
| <!-- BEGIN ANOTHER MAJOR STABILITY ROW -->
| |
| <tr>
| |
| <!-- BEGIN 2ND LEFT STABILITY COLUMN -->
| |
| <td align="left">
| |
| If we ''guess'' that radial oscillations about the equilibrium state involve purely homologous expansion/contraction, then the radial-displacement eigenfunction is, <math>~x</math> = constant, and the governing variational relation gives,
| |
|
| |
| <div align="center">
| |
| <table border="0" cellpadding="5" align="center">
| |
| <tr>
| |
| <td align="right">
| |
| <math>~\omega^2 \int_0^R r^2 dM_r</math>
| |
| </td>
| |
| <td align="center">
| |
| <math>~\approx</math>
| |
| </td>
| |
| <td align="left">
| |
| <math>~
| |
| (4- 3\gamma) W_\mathrm{grav}+ 3^2 \gamma P_eV \, .
| |
| </math>
| |
| </td>
| |
| </tr>
| |
| </table>
| |
| </div>
| |
| </td>
| |
| </tr>
| |
| </table>
| |
|
| |
|
| =See Also= | | =See Also= |