Difference between revisions of "User:Tohline/SSC/Synopsis StyleSheet"
Line 8: | Line 8: | ||
==New Table Construction== | ==New Table Construction== | ||
{| class="wikitable" style="margin: auto; color:black;" border="1" cellpadding="12" | |||
|+<font size="+1"> | <p></p> | ||
{| class="wikitable" style="margin: auto; color:black; width:85%;" border="1" cellpadding="12" | |||
|+ style="height:30px;" | <font size="+1">'''Spherically Symmetric Configurations that undergo Adiabatic Compression/Expansion'''</font> — adiabatic index, <math>~\gamma</math> | |||
|- | |- | ||
! colspan="2" | | ! colspan="2" | | ||
Line 52: | Line 54: | ||
! style="background-color:lightgreen;" colspan="2"|<font size="+1"><b>Equilibrium Structure</b></font> | ! style="background-color:lightgreen;" colspan="2"|<font size="+1"><b>Equilibrium Structure</b></font> | ||
|- | |- | ||
! style="text- | ! style="text-align:center;" width="50%" |<b>Detailed Force Balance</b> | ||
! style="text- | ! style="text-align:center;" |<b>Free-Energy Analysis</b> | ||
|- | |||
! style="vertical-align:top; text-align:left;" |Given a barotropic equation of state, <math>~P(\rho)</math>, solve the equation of | |||
<div align="center"> | |||
<font color="maroon"><b>Hydrostatic Balance</b></font><br /> | |||
{{ User:Tohline/Math/EQ_SShydrostaticBalance01 }} | |||
</div> | |||
for the radial density distribution, <math>~\rho(r)</math>. | |||
! style="vertical-align:top; text-align:left;" rowspan="3"|The Free-Energy is, | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~\mathfrak{G}</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~W_\mathrm{grav} + U_\mathrm{int} + P_eV</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~-a R^{-1} + bR^{3-3\gamma}+ cR^3 \, .</math> | |||
</td> | |||
</tr> | |||
</table> | |||
Therefore, also, | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~\frac{d\mathfrak{G}}{dR}</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~aR^{-2} +(3-3\gamma)bR^{2-3\gamma} + 3cR^2</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~\frac{1}{R}\biggl[ -W_\mathrm{grav} - 3(\gamma-1)U_\mathrm{int} + 3P_eV\biggr]</math> | |||
</td> | |||
</tr> | |||
</table> | |||
Equilibrium configurations exist at extrema of the free-energy function, that is, they are identified by setting <math>~d\mathfrak{G}/dR = 0</math>. Hence, equilibria are defined by the condition, | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~0</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~W_\mathrm{grav} + 3(\gamma-1)U_\mathrm{int} - 3P_eV\, .</math> | |||
</td> | |||
</tr> | |||
</table> | |||
|- | |||
! style="text-align:center;" |<b>Virial Equilibrium</b> | |||
|- | |||
! style="vertical-align:top; text-align:left;" | | |||
Multiply the hydrostatic-balance equation through by <math>~rdV</math> and integrate over the volume: | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~0</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~-\int_0^R r\biggl(\frac{dP}{dr}\biggr)dV - \int_0^R r\biggl(\frac{GM_r \rho}{r^2}\biggr)dV</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~-\int_0^R 4\pi r^3 \biggl(\frac{dP}{dr}\biggr) dr - \int_0^R \biggl(\frac{GM_r}{r}\biggr)dM_r</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~-\int_0^R\biggl[ \frac{d}{dr}\biggl( 4\pi r^3P \biggr) - 12\pi r^2 P\biggr] dr + W_\mathrm{grav}</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~\int_0^R 3\biggl[ 4\pi r^2 P \biggr]dr - \int_0^R \biggl[ d(3PV)\biggr] + W_\mathrm{grav}</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~3(\gamma-1)U_\mathrm{int} + W_\mathrm{grav} - \biggl[ 3PV \biggr]_0^R \, .</math> | |||
</td> | |||
</tr> | |||
</table> | |||
|- | |||
! style="background-color:lightgreen;" colspan="2"|<font size="+1"><b>Stability Analysis</b></font> | |||
|- | |||
! style="text-align:center;" width="50%" |<b>Perturbation Theory</b> | |||
! style="text-align:center;" |<b>Free-Energy Analysis</b> | |||
|- | |||
! style="vertical-align:top; text-align:left;" | | |||
Given the radial profile of the density and pressure in the equilibrium configuration, solve the [[User:Tohline/SSC/VariationalPrinciple#Ledoux_and_Pekeris_.281941.29|eigenvalue problem defined]] by the, | |||
<div align="center"> | |||
<font color="#770000">'''LAWE: Linear Adiabatic Wave''' (or ''Radial Pulsation'') '''Equation'''</font><br /> | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~0</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
\frac{d}{dr}\biggl[ r^4 \gamma P ~\frac{dx}{dr} \biggr] | |||
+\biggl[ \omega^2 \rho r^4 + (3\gamma - 4) r^3 \frac{dP}{dr} \biggr] x | |||
</math> | |||
</td> | |||
</tr> | |||
</table> | |||
</div> | |||
to find one or more radially dependent, radial-displacement eigenvectors, <math>~x \equiv \delta r/r</math>, along with (the square of) the corresponding oscillation eigenfrequency, <math>~\omega^2</math>. | |||
! style="vertical-align:top; text-align:left;" rowspan="1"| | |||
The second derivative of the free-energy function is, | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~\frac{d^2 \mathfrak{G}}{dR^2}</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
-2aR^{-3} + (3-3\gamma)(2-3\gamma)b R^{1-3\gamma} + 6cR | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~\frac{1}{R^2}\biggl[ | |||
2W_\mathrm{grav} - 3(\gamma-1)(2-3\gamma)U_\mathrm{int} + 6P_e V | |||
\biggr] \, . | |||
</math> | |||
</td> | |||
</tr> | |||
</table> | |||
Evaluating this second derivative for an equilibrium configuration — that is by calling upon the (virial) equilibrium condition to set the value of the internal energy — we have, | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~3(\gamma-1)U_\mathrm{int}</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~3P_e V - W_\mathrm{grav} </math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
<math>~\Rightarrow~~~ R^2 \biggl[\frac{d^2\mathfrak{G}}{dR^2}\biggr]_\mathrm{equil}</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~2W_\mathrm{grav} - (2-3\gamma)\biggl[3P_e V - W_\mathrm{grav} \biggr] + 6P_e V | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~(4-3\gamma)W_\mathrm{grav} + 3^2\gamma P_e V \, . | |||
</math> | |||
</td> | |||
</tr> | |||
</table> | |||
|} | |} | ||
Revision as of 01:03, 19 June 2017
Spherically Symmetric Configurations Synopsis
| Tiled Menu | Tables of Content | Banner Video | Tohline Home Page | |
New Table Construction
| |||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Equilibrium Structure | |||||||||||||||||||
Detailed Force Balance | Free-Energy Analysis | ||||||||||||||||||
Given a barotropic equation of state, <math>~P(\rho)</math>, solve the equation of
for the radial density distribution, <math>~\rho(r)</math>. |
The Free-Energy is,
Therefore, also,
Equilibrium configurations exist at extrema of the free-energy function, that is, they are identified by setting <math>~d\mathfrak{G}/dR = 0</math>. Hence, equilibria are defined by the condition,
| ||||||||||||||||||
Virial Equilibrium | |||||||||||||||||||
Multiply the hydrostatic-balance equation through by <math>~rdV</math> and integrate over the volume:
| |||||||||||||||||||
Stability Analysis | |||||||||||||||||||
Perturbation Theory | Free-Energy Analysis | ||||||||||||||||||
Given the radial profile of the density and pressure in the equilibrium configuration, solve the eigenvalue problem defined by the, LAWE: Linear Adiabatic Wave (or Radial Pulsation) Equation
to find one or more radially dependent, radial-displacement eigenvectors, <math>~x \equiv \delta r/r</math>, along with (the square of) the corresponding oscillation eigenfrequency, <math>~\omega^2</math>. |
The second derivative of the free-energy function is,
Evaluating this second derivative for an equilibrium configuration — that is by calling upon the (virial) equilibrium condition to set the value of the internal energy — we have,
|
Old Table Construction
Spherically Symmetric Configurations that undergo Adiabatic Compression/Expansion — adiabatic index, <math>~\gamma</math> |
|||||||||||||||||||
|
|||||||||||||||||||
Equilibrium Structure |
|||||||||||||||||||
Detailed Force Balance |
Free-Energy Analysis |
||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|
The Free-Energy is,
Therefore, also,
Equilibrium configurations exist at extrema of the free-energy function, that is, they are identified by setting <math>~d\mathfrak{G}/dR = 0</math>. Hence, equilibria are defined by the condition,
|
||||||||||||||||||
Virial Equilibrium | |||||||||||||||||||
|
|||||||||||||||||||
Stability Analysis |
|||||||||||||||||||
Perturbation Theory |
Free-Energy Analysis |
||||||||||||||||||
Given the radial profile of the density and pressure in the equilibrium configuration, solve the eigenvalue problem defined by the, LAWE: Linear Adiabatic Wave (or Radial Pulsation) Equation
to find one or more radially dependent, radial-displacement eigenvectors, <math>~x \equiv \delta r/r</math>, along with (the square of) the corresponding oscillation eigenfrequency, <math>~\omega^2</math>. |
The second derivative of the free-energy function is,
Evaluating this second derivative for an equilibrium configuration — that is by calling upon the (virial) equilibrium condition to set the value of the internal energy — we have,
|
||||||||||||||||||
Variational Principle |
|||||||||||||||||||
Multiply the LAWE through by <math>~4\pi x dr</math>, and integrate over the volume of the configuration gives the, Governing Variational Relation
Now, by setting <math>~(d\ln x/d\ln r)_{r=R} = -3</math>, we can ensure that the pressure fluctuation is zero and, hence, <math>~P = P_e</math> at the surface, in which case this relation becomes,
|
|||||||||||||||||||
Approximation: Homologous Expansion/Contraction |
|||||||||||||||||||
If we guess that radial oscillations about the equilibrium state involve purely homologous expansion/contraction, then the radial-displacement eigenfunction is, <math>~x</math> = constant, and the governing variational relation gives,
|
See Also
© 2014 - 2021 by Joel E. Tohline |