Difference between revisions of "User:Tohline/Appendix/Ramblings/PowerSeriesExpressions"
Line 56: | Line 56: | ||
==Isothermal Lane-Emden Function== | ==Isothermal Lane-Emden Function== | ||
We seek a power-series expression for the isothermal, Lane-Emden function, <math>~w(r)</math> — expanded about the coordinate center, <math>~r = 0</math> — that approximately satisfies the isothermal Lane-Emden equation, | |||
<div align="center"> | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~\frac{d^2w}{dr^2} +\frac{2}{r} \frac{d w}{dr} | |||
</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~e^{-w} \, . </math> | |||
</td> | |||
</tr> | |||
</table> | |||
</div> | |||
A general power-series should be of the form, | |||
<div align="center"> | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~w</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
w_0 + ar + br^2 + cr^3 + dr^4 + er^5 + fr^6 + gr^7 + hr^8 +\cdots | |||
</math> | |||
</td> | |||
</tr> | |||
</table> | |||
</div> | |||
Result: | |||
<div align="center" id="PolytropicLaneEmden"> | |||
<table border="1" width="80%" cellpadding="8" align="center"><tr><td align="center"> | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~w(r) | |||
</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~\frac{r^2}{6} - \frac{r^4}{120} + \frac{r^6}{1890} + \cdots \, .</math> | |||
</td> | |||
</tr> | |||
</table> | |||
</td></tr></table> | |||
</div> | |||
See also: | |||
* Equation (377) from §22 in Chapter IV of [[User:Tohline/Appendix/References#C67|C67]]). | |||
==Displacement Function for Polytropic LAWE== | ==Displacement Function for Polytropic LAWE== |
Revision as of 22:26, 25 February 2017
Approximate Power-Series Expressions
| Tiled Menu | Tables of Content | Banner Video | Tohline Home Page | |
Polytropic Lane-Emden Function
We seek a power-series expression for the polytropic, Lane-Emden function, <math>~\Theta_\mathrm{H}(\xi)</math> — expanded about the coordinate center, <math>~\xi = 0</math> — that approximately satisfies the Lane-Emden equation,
<math>~\frac{1}{\xi^2} \frac{d}{d\xi}\biggl( \xi^2 \frac{d\Theta_H}{d\xi} \biggr) = - \Theta_H^n</math> |
A general power-series should be of the form,
<math>~\Theta_H</math> |
<math>~=</math> |
<math>~ \theta_0 + a\xi + b\xi^2 + c\xi^3 + d\xi^4 + e\xi^5 + f\xi^6 + \cdots </math> |
Result:
|
Isothermal Lane-Emden Function
We seek a power-series expression for the isothermal, Lane-Emden function, <math>~w(r)</math> — expanded about the coordinate center, <math>~r = 0</math> — that approximately satisfies the isothermal Lane-Emden equation,
<math>~\frac{d^2w}{dr^2} +\frac{2}{r} \frac{d w}{dr} </math> |
<math>~=</math> |
<math>~e^{-w} \, . </math> |
A general power-series should be of the form,
<math>~w</math> |
<math>~=</math> |
<math>~ w_0 + ar + br^2 + cr^3 + dr^4 + er^5 + fr^6 + gr^7 + hr^8 +\cdots </math> |
Result:
|
See also:
- Equation (377) from §22 in Chapter IV of C67).
Displacement Function for Polytropic LAWE
Displacement Function for Isothermal LAWE
© 2014 - 2021 by Joel E. Tohline |