Difference between revisions of "User:Tohline/SSC/Stability/Isothermal"
(→Groundwork: Finished matching Yabushita's eqs. 2.9 and 2.10) |
|||
Line 122: | Line 122: | ||
===Linearized Wave Equation=== | ===Linearized Wave Equation=== | ||
In an [[User:Tohline/SSC/ | In an [[User:Tohline/SSC/Stability_Eulerian_Perspective#EulerianWaveEquation|accompanying discussion]], we derived the so-called, | ||
<div align="center" id="EulerianWaveEquation"> | |||
<table border="1" cellpadding="8"> | |||
<tr><td align="center"> | |||
<table border="0" cellpadding="1" align="center"> | |||
<tr> | |||
<td align="center" colspan="3"> | |||
<font color="#770000">'''Wave Equation for Self-Gravitating Fluids'''</font> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
<math>~\frac{\partial^2 s }{\partial t^2} + \frac{\nabla\rho_0}{\rho_0} \cdot \frac{\partial \vec{v}}{\partial t} | |||
</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>4\pi G \rho_0 s + \nabla^2\biggl[s \biggl( \frac{dP}{d\rho} \biggr)_0 \biggr] </math> | |||
</td> | |||
</tr> | |||
</table> | |||
</td></tr> | |||
</table> | |||
</div> | |||
that describes the time-variation at any point in space of the ''fractional'' density fluctuation, | |||
<div align="center"> | |||
<math>s \equiv \frac{\rho_1}{\rho_0} \, .</math> | |||
</div> | |||
Multiplying this differential equation through by <math>~\rho_0</math>, and making two substitutions from our [[User:Tohline/SSC/Stability_Eulerian_Perspective#Summary_and_Combinations|accompanying summary of the separately linearized principal governing equations]] — namely, | |||
<div align="center"> | |||
<math> | |||
~\frac{\partial \vec{v}}{\partial t} = - \nabla\Phi_1 - \frac{1}{\rho_0} \nabla P_1 + \frac{\rho_1}{\rho_0^2} \nabla P_0 \, , | |||
</math> | |||
</div> | |||
and, | |||
<div align="center"> | |||
<math> | |||
P_1 = \biggl( \frac{dP}{d\rho} \biggr)_0 \rho_1 ~~~ \Rightarrow ~~~ s \biggl( \frac{dP}{d\rho} \biggr)_0 = \frac{P_1}{\rho_0} \, , | |||
</math> | |||
</div> | |||
— gives, | |||
<div align="center"> | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~\frac{\partial^2 \rho_1 }{\partial t^2} + \nabla\rho_0 \cdot \biggl[ - \nabla\Phi_1 - \frac{1}{\rho_0} \nabla P_1 + \frac{\rho_1}{\rho_0^2} \nabla P_0\biggr] | |||
</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>4\pi G \rho_0 \rho_1 + \rho_0\nabla^2\biggl[\frac{P_1}{\rho_0} \biggr] </math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
<math>~\Rightarrow ~~~ \frac{\partial^2 \rho_1 }{\partial t^2} + \nabla\rho_0 \cdot \biggl[ - \nabla\Phi_1 | |||
- \frac{1}{\rho_0} \nabla P_1 - \frac{\rho_1}{\rho_0} \nabla \Phi_0\biggr] | |||
</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>4\pi G \rho_0 \rho_1 + \nabla^2 P_1 + P_1 \rho_0\nabla^2\biggl[\frac{1}{\rho_0} \biggr] </math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
<math>~\Rightarrow ~~~ \frac{\partial^2 \rho_1 }{\partial t^2} - \nabla^2 P_1 - 4\pi G \rho_0 \rho_1 - \nabla\rho_0 \cdot \nabla\Phi_1 | |||
- \nabla \Phi_0 \cdot \nabla\rho_1 | |||
</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math> \nabla\rho_0 \cdot \biggl[ \frac{1}{\rho_0} \nabla P_1\biggr] + P_1 \rho_0\nabla^2\biggl[\frac{1}{\rho_0} \biggr] | |||
+ \nabla \Phi_0 \cdot \biggl[ \frac{\rho_1}{\rho_0} \nabla\rho_0 -\nabla\rho_1 \biggr] | |||
</math> | |||
</td> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math> \nabla\rho_0 \cdot \biggl[ \frac{1}{\rho_0} \nabla P_1\biggr] + P_1 \rho_0\nabla^2\biggl[\frac{1}{\rho_0} \biggr] | |||
+ \frac{\nabla \Phi_0}{\rho_0} \cdot \biggl[ \rho_1 \nabla\rho_0 - \rho_0 \nabla\rho_1 \biggr] | |||
</math> | |||
</td> | |||
</tr> | |||
</table> | |||
</div> | |||
===Alternative Expression=== | |||
<div align="center" id="2ndOrderODE"> | <div align="center" id="2ndOrderODE"> | ||
<font color="#770000">'''Adiabatic Wave''' (or ''Radial Pulsation'') '''Equation'''</font><br /> | <font color="#770000">'''Adiabatic Wave''' (or ''Radial Pulsation'') '''Equation'''</font><br /> |
Revision as of 21:40, 8 November 2016
Radial Oscillations of Pressure-Truncated Isothermal Spheres
Here we draw primarily from the following three sources:
- §5.3.8 (p. 372) of Horedt's (2004) treatise on Polytropes: Applications in Astrophysics and Related Fields
- S. Yabushita (1968, MNRAS, 140, 109) — Jeans's Type Gravitational Instability of Finite Isothermal Gas Spheres
- L. G. Taff & H. M. Horn (1974, MNRAS, 168, 427-432) — Radial Pulsations of Finite Isothermal Gas Spheres
See also:
- S. Yabushita (1975, MNRAS, 171, 85) — Jeans's Type Gravitational Instability of Finite Isothermal Gas Spheres — II
- S. Yabushita (1992, Astrophys. & Space Sciences, 193, 173 - 183) — Similarity between the structure and stability of isothermal and polytropic gas spheres
- J. P. Chieze (1987, A&A, 171, 225 - 232) — The fragmentation of molecular clouds. I - The mass-radius-velocity dispersion relations
| Tiled Menu | Tables of Content | Banner Video | Tohline Home Page | |
Groundwork
Equilibrium Model
In an accompanying discussion, while reviewing the original derivations of Ebert (1955) and Bonnor (1956), we have detailed the equilibrium properties of pressure-truncated isothermal spheres. A parallel presentation of these details can be found in §2 — specifically, equations (2.4) through (2.10) — of Yabushita (1968). Each of Yabushita's key mathematical expressions can be mapped to ours via the variable substitutions presented here in Table 1.
Table 1: Mapping from Yabushita's (1968) Notation to Ours |
||||||
Yabushita's (1968) Notation: | <math>~x</math> | <math>~\psi</math> | <math>~\mu</math> | <math>~M</math> | <math>~x_0</math> | <math>~p_0</math> |
Our Notation: | <math>~\xi</math> | <math>~-\psi</math> | <math>~\bar\mu</math> | <math>~M_{\xi_e}</math> | <math>~\xi_e</math> | <math>~P_e</math> |
For example, given the system's sound speed, <math>~c_s</math>, and total mass, <math>~M_{\xi_e}</math>, the expression from our presentation that shows how the bounding external pressure, <math>~P_e</math>, depends on the dimensionless Lane-Emden function, <math>~\psi</math>, is,
<math>~P_e</math> |
<math>~=</math> |
<math>~\biggl( \frac{c_s^8}{4\pi G^3 M_{\xi_e}^2} \biggr) ~\xi_e^4 \biggl(\frac{d\psi}{d\xi}\biggr)^2_e e^{-\psi_e}</math> |
<math>~\Rightarrow ~~~ \xi_e^2 \biggl(-\frac{d\psi}{d\xi}\biggr)_e e^{-(1/2)\psi_e}</math> |
<math>~=</math> |
<math>~\frac{1}{c_s^4}\biggl[ G^3 M_{\xi_e}^2 ~(4\pi P_e)\biggr]^{1 / 2} \, ,</math> |
which — see the boxed-in excerpt that follows — exactly matches Yabushita's (1968) equation (2.9), after recalling that the system's sound speed is related to its temperature via the relation,
<math>c_s^2 = \frac{\Re T}{\bar{\mu}} \, .</math>
And, our expression for the truncated configuration's equilibrium radius is,
<math>~R</math> |
<math>~=</math> |
<math>~\frac{GM_{\xi_e}}{c_s^2} \biggl[ - \xi \biggl(\frac{d\psi}{d\xi}\biggr) \biggr]_e^{-1}</math> |
which — see the boxed-in excerpt that follows — matches Yabushita's (1968) equation (2.10).
Equations extracted† from S. Yabushita (1968, MNRAS, 140, 109)
"Jeans's Type Gravitational Instability of Finite Isothermal Gas Spheres"
MNRAS, vol. 140, pp. 109-120 © Royal Astronomical Society |
†Mathematical expressions displayed here with layout modified from the original publication. |
Linearized Wave Equation
In an accompanying discussion, we derived the so-called,
|
that describes the time-variation at any point in space of the fractional density fluctuation,
<math>s \equiv \frac{\rho_1}{\rho_0} \, .</math>
Multiplying this differential equation through by <math>~\rho_0</math>, and making two substitutions from our accompanying summary of the separately linearized principal governing equations — namely,
<math> ~\frac{\partial \vec{v}}{\partial t} = - \nabla\Phi_1 - \frac{1}{\rho_0} \nabla P_1 + \frac{\rho_1}{\rho_0^2} \nabla P_0 \, , </math>
and,
<math> P_1 = \biggl( \frac{dP}{d\rho} \biggr)_0 \rho_1 ~~~ \Rightarrow ~~~ s \biggl( \frac{dP}{d\rho} \biggr)_0 = \frac{P_1}{\rho_0} \, , </math>
— gives,
<math>~\frac{\partial^2 \rho_1 }{\partial t^2} + \nabla\rho_0 \cdot \biggl[ - \nabla\Phi_1 - \frac{1}{\rho_0} \nabla P_1 + \frac{\rho_1}{\rho_0^2} \nabla P_0\biggr] </math> |
<math>~=</math> |
<math>4\pi G \rho_0 \rho_1 + \rho_0\nabla^2\biggl[\frac{P_1}{\rho_0} \biggr] </math> |
<math>~\Rightarrow ~~~ \frac{\partial^2 \rho_1 }{\partial t^2} + \nabla\rho_0 \cdot \biggl[ - \nabla\Phi_1 - \frac{1}{\rho_0} \nabla P_1 - \frac{\rho_1}{\rho_0} \nabla \Phi_0\biggr] </math> |
<math>~=</math> |
<math>4\pi G \rho_0 \rho_1 + \nabla^2 P_1 + P_1 \rho_0\nabla^2\biggl[\frac{1}{\rho_0} \biggr] </math> |
<math>~\Rightarrow ~~~ \frac{\partial^2 \rho_1 }{\partial t^2} - \nabla^2 P_1 - 4\pi G \rho_0 \rho_1 - \nabla\rho_0 \cdot \nabla\Phi_1 - \nabla \Phi_0 \cdot \nabla\rho_1 </math> |
<math>~=</math> |
<math> \nabla\rho_0 \cdot \biggl[ \frac{1}{\rho_0} \nabla P_1\biggr] + P_1 \rho_0\nabla^2\biggl[\frac{1}{\rho_0} \biggr] + \nabla \Phi_0 \cdot \biggl[ \frac{\rho_1}{\rho_0} \nabla\rho_0 -\nabla\rho_1 \biggr] </math> |
|
<math>~=</math> |
<math> \nabla\rho_0 \cdot \biggl[ \frac{1}{\rho_0} \nabla P_1\biggr] + P_1 \rho_0\nabla^2\biggl[\frac{1}{\rho_0} \biggr] + \frac{\nabla \Phi_0}{\rho_0} \cdot \biggl[ \rho_1 \nabla\rho_0 - \rho_0 \nabla\rho_1 \biggr] </math> |
Alternative Expression
Adiabatic Wave (or Radial Pulsation) Equation
<math>~ \frac{d^2x}{dr_0^2} + \biggl[\frac{4}{r_0} - \biggl(\frac{g_0 \rho_0}{P_0}\biggr) \biggr] \frac{dx}{dr_0} + \biggl(\frac{\rho_0}{\gamma_\mathrm{g} P_0} \biggr)\biggl[\omega^2 + (4 - 3\gamma_\mathrm{g})\frac{g_0}{r_0} \biggr] x = 0 </math> |
whose solution gives eigenfunctions that describe various radial modes of oscillation in spherically symmetric, self-gravitating fluid configurations.
See Also
© 2014 - 2021 by Joel E. Tohline |