Difference between revisions of "User:Tohline/Appendix/Ramblings/Nonlinar Oscillation"
(→Configuration Pairing: Improve version of quartic equation) |
(→Configuration Pairing: Trying to solve quartic) |
||
Line 690: | Line 690: | ||
</table> | </table> | ||
</div> | </div> | ||
====Quartic Solution==== | |||
Here, we will draw from the [https://en.wikipedia.org/wiki/Quartic_function Wikipedia discussion of the quartic function]. The generic form is, | |||
<div align="center"> | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~0</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ax^4 + bx^3 + cx^2 + dx + e \,.</math> | |||
</td> | |||
</tr> | |||
</table> | |||
</div> | |||
Relating this to our specific quartic function, we should ultimately make the following assignments: | |||
<div align="center"> | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~a</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~9</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
<math>~b</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~20 + \delta p_0</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
<math>~c</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~12 + 3\delta p_0 = 3(4+\delta p_0)</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
<math>~d</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~3 \delta p_0</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
<math>~e</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~1</math> | |||
</td> | |||
</tr> | |||
</table> | |||
</div> | |||
We need to evaluate the following expressions: | |||
<div align="center"> | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~p</math> | |||
</td> | |||
<td align="center"> | |||
<math>~\equiv</math> | |||
</td> | |||
<td align="left"> | |||
<math>~\frac{8ac-3b^2}{3a^2}</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~\frac{2^3 \cdot 3^3(4+\delta p_0)-3(20+\delta p_0)^2}{3^5}</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
<math>~q</math> | |||
</td> | |||
<td align="center"> | |||
<math>~\equiv</math> | |||
</td> | |||
<td align="left"> | |||
<math>~\frac{b^3 - 4abc + 8a^2d}{8a^3}</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~\frac{(20 + \delta p_0)^3 - 2^2\cdot 3^3(4+\delta p_0) (20 + \delta p_0) + 2^3\cdot 3^5\delta p_0}{2^3 \cdot 3^6}</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
<math>~\Delta_0</math> | |||
</td> | |||
<td align="center"> | |||
<math>~\equiv</math> | |||
</td> | |||
<td align="left"> | |||
<math>~c^2 - 3bd + 12ae</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~3^2(4+\delta p_0)^2 - 3^2\delta p_0 (20 + \delta p_0) + 2^2\cdot 3^3</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
<math>~\Delta_1</math> | |||
</td> | |||
<td align="center"> | |||
<math>~\equiv</math> | |||
</td> | |||
<td align="left"> | |||
<math>~2c^3 - 9bcd + 27b^2e+27ad^2 - 72ace</math> | |||
</td> | |||
</tr> | |||
</table> | |||
</div> | |||
{{LSU_HBook_footer}} | {{LSU_HBook_footer}} |
Revision as of 22:05, 25 August 2016
Radial Oscillations in Pressure-Truncated n = 5 Polytropes
[Comment by Joel Tohline on 24 August 2016] Over the past few weeks, I have been putting together a powerpoint presentation that summarizes what I've learned, especially over the last several years, about turning points — and their relative positioning with respect to points of dynamical instability — along equilibrium sequences. One key finding, which is illustrated in Figure 3 of that discussion, is that the transition from stable to unstable systems along the n = 5 sequence occurs after, rather than at, the pressure maximum of the sequence. This means that, in the immediate vicinity of the pressure maximum, two stable equilibrium configurations exist with the same <math>~(K, M_\mathrm{tot}, P_e) </math> but different radii. Perhaps this means that, in the absence of dissipation, and without the need for a driving mechanism, a permanent oscillation between these two states can be activated.
Upon further thought, it occurred to me that a careful examination of the internal structure of both models — especially relative to one another — might reveal what the eigenvector of that (nonlinear) oscillation might be.
| Tiled Menu | Tables of Content | Banner Video | Tohline Home Page | |
Review of Internal Structure
Run of Mass
According to Chandrasekhar (Chapter IV, equation 67, p.97), the mass interior to <math>~\xi</math> is,
<math>~M(\xi)</math> |
<math>~=</math> |
<math>~4\pi a_n^3 \rho_c (-\xi^2 \theta^') \, .</math> |
For a pressure-truncated polytrope, the total mass is,
<math>~M_\mathrm{tot}</math> |
<math>~=</math> |
<math>~4\pi a_n^3 \rho_c (-\tilde\xi^2 \tilde\theta^') \, ,</math> |
which means that, as a function of <math>~\xi</math> in a pressure-truncated polytrope, the relative mass is,
<math>~m_\xi \equiv \frac{M(\xi)}{M_\mathrm{tot}}</math> |
<math>~=</math> |
<math>~\biggl[4\pi a_n^3 \rho_c (-\xi^2 \theta^') \biggr] \biggl[ 4\pi a_n^3 \rho_c (-\tilde\xi^2 \tilde\theta^') \biggr]^{-1}</math> |
|
<math>~=</math> |
<math>~\frac{(-\xi^2 \theta^')}{(-\tilde\xi^2 \tilde\theta^')} \, .</math> |
Thus, for an <math>~n = 5</math> system we have,
<math>~m_\xi</math> |
<math>~=</math> |
<math>~ \biggl(\frac{\xi}{\tilde\xi}\biggr)^2 \biggl[ \frac{\xi }{ 3}\biggl(1 + \frac{\xi^2}{3}\biggr)^{-3/2} \biggr] \biggl[ \frac{\tilde\xi }{ 3}\biggl(1 + \frac{\tilde\xi^2}{3}\biggr)^{-3/2} \biggr]^{-1}</math> |
|
<math>~=</math> |
<math>~ \biggl(\frac{\xi}{\tilde\xi}\biggr)^3 \biggl(1 + \frac{\xi^2}{3}\biggr)^{-3/2} \biggl(1 + \frac{\tilde\xi^2}{3}\biggr)^{3/2} \, ;</math> |
and, for the configuration at the pressure maximum <math>~(\tilde\xi = 3)</math>, in particular, we have,
<math>~m_0</math> |
<math>~=</math> |
<math>~\biggl(\frac{2\xi}{3}\biggr)^3 \biggl(1 + \frac{\xi^2}{3}\biggr)^{-3/2} \, .</math> |
Corresponding Lagrangian Radial Coordinate
For any pressure-truncated polytrope, the fractional radial-coordinate running through the equilibrium configuration is,
<math>~\frac{r(\xi)}{R_\mathrm{eq}}</math> |
<math>~=</math> |
<math>~\frac{\xi}{\tilde\xi}</math> |
<math>~\Rightarrow~~~ r(\xi)</math> |
<math>~=</math> |
<math>~\biggl(\frac{\xi}{\tilde\xi}\biggr) R_\mathrm{eq}</math> |
<math>~\Rightarrow~~~r_\xi \equiv \frac{r(\xi)}{R_\mathrm{norm}}</math> |
<math>~=</math> |
<math>~\biggl(\frac{\xi}{\tilde\xi}\biggr) \biggl[ \frac{4\pi}{(n+1)^n}\biggr]^{1/(n-3)} \tilde\xi ( -\tilde\xi^2 \tilde\theta' )^{(1-n)/(n-3)} \, . </math> |
For <math>~n=5</math> configurations, this means,
<math>~r_\xi</math> |
<math>~=</math> |
<math>~\biggl(\frac{\xi}{\tilde\xi}\biggr) \biggl[ \frac{4\pi}{2^5\cdot 3^5}\biggr]^{1/2} \tilde\xi ( -\tilde\xi^2 \tilde\theta' )^{-2} </math> |
|
<math>~=</math> |
<math>~\xi \biggl\{ \biggl[ \frac{4\pi}{2^5\cdot 3^5}\biggr]^{1/2} \tilde\xi^{-4} \biggl[ \frac{\tilde\xi}{3} \biggl( 1+\frac{\tilde\xi^2}{3} \biggr)^{-3/2}\biggr]^{-2} \biggr\} </math> |
|
<math>~=</math> |
<math>~\xi \biggl\{ \biggl[ \frac{4\pi}{2^5\cdot 3}\biggr]^{1/2} \tilde\xi^{-6} \biggl( 1+\frac{\tilde\xi^2}{3} \biggr)^{3}\biggr\} \, ; </math> |
and, for the configuration at the pressure maximum <math>~(\tilde\xi = 3)</math>, in particular, this gives,
<math>~r_0</math> |
<math>~=</math> |
<math>~\xi \biggl\{ \biggl[ \frac{4\pi}{2^5\cdot 3}\biggr]^{1/2} \biggl(\frac{2}{3}\biggr)^6\biggr\} </math> |
|
<math>~=</math> |
<math>~\xi \biggl[ \frac{2^9 \pi}{3^{13}}\biggr]^{1/2} </math> |
Exploration
n = 5 Mass-Radius Relation
So, for any <math>~\tilde\xi</math> configuration, the parametric relationship between <math>~m_\xi</math> and <math>~r_\xi</math> in pressure-truncated, <math>~n=5</math> polytropes is,
<math>~m_\xi</math> |
<math>~=</math> |
<math>~ \biggl(\frac{\xi}{\tilde\xi}\biggr)^3 \biggl(1 + \frac{\xi^2}{3}\biggr)^{-3/2} \biggl(1 + \frac{\tilde\xi^2}{3}\biggr)^{3/2} \, ,</math> |
<math>~r_\xi</math> |
<math>~=</math> |
<math>~\xi \biggl\{ \biggl[ \frac{4\pi}{2^5\cdot 3}\biggr]^{1/2} \tilde\xi^{-6} \biggl( 1+\frac{\tilde\xi^2}{3} \biggr)^{3}\biggr\} \, . </math> |
And this can be inverted analytically in the case of <math>~\tilde\xi = 3</math>. Specifically,
<math>~m_0</math> |
<math>~=</math> |
<math>~\biggl(\frac{2\xi}{3}\biggr)^3 \biggl(1 + \frac{\xi^2}{3}\biggr)^{-3/2} </math> |
<math>~\Rightarrow~~~ m_0^{2/3}</math> |
<math>~=</math> |
<math>~\biggl(\frac{2^2\xi^2}{3^2}\biggr) \biggl(1 + \frac{\xi^2}{3}\biggr)^{-1} </math> |
<math>~\Rightarrow~~~ 2^2\xi^2 </math> |
<math>~=</math> |
<math>~ 3^2\biggl(1 + \frac{\xi^2}{3}\biggr) m_0^{2/3} </math> |
<math>~\Rightarrow~~~ \xi^2 (2^2 - 3 m_0^{2/3}) </math> |
<math>~=</math> |
<math>~ 3^2m_0^{2/3} </math> |
<math>~\Rightarrow~~~ \xi^2 </math> |
<math>~=</math> |
<math>~ \frac{3^2m_0^{2/3}}{(2^2 - 3 m_0^{2/3})} \, . </math> |
Hence, the radius-mass relationship in the configuration at the <math>~P_\mathrm{max}</math> turning point is,
<math>~ r_0 (m_0) </math> |
<math>~=</math> |
<math>~\biggl[ \frac{2^9 \pi}{3^{13}}\biggr]^{1/2} \biggl[\frac{3^2m_0^{2/3}}{2^2 - 3 m_0^{2/3}}\biggr]^{1/2} \, . </math> |
Actually, the inversion can be performed analytically for any choice of <math>~\tilde\xi</math> to obtain,
<math>~ r_\xi (m_\xi) </math> |
<math>~=</math> |
<math>~\biggl[ \frac{2^9 \pi}{3^{13}}\biggr]^{1/2} \biggl[\frac{3^2m_\xi^{2/3}}{\tilde{C} - 3 m_\xi^{2/3}}\biggr]^{1/2} \, , </math> |
where,
<math>~\tilde{C}</math> |
<math>~\equiv</math> |
<math>~ \frac{3^2}{\tilde\xi^2}\biggl( 1 + \frac{\tilde\xi^2}{3} \biggr) \, . </math> |
Configuration Pairing
Setup
Now, let's identify two <math>~n=5</math> equilibrium states that sit very near the <math>~P_\mathrm{max}</math> turning point on the two separate branches of the equilibrium sequence and that have identical external pressures. We know from separate discussions that, in both cases,
<math> ~\frac{P_\mathrm{e}}{P_\mathrm{norm}} </math> |
<math>~=~</math> |
<math>~\biggl[ \frac{(n+1)^3}{4\pi}\biggr]^{(n+1)/(n-3)} \tilde\theta_n^{n+1}( -\tilde\xi^2 \tilde\theta' )^{2(n+1)/(n-3)} </math> |
|
<math>~=~</math> |
<math>~\biggl[ \frac{2\cdot 3^3}{\pi}\biggr]^{3} \tilde\xi^{12} \tilde\theta_n^{6}( - \tilde\theta' )^{6} </math> |
<math>~\Rightarrow~~~ \biggl[ \frac{\pi}{2\cdot 3^3}\biggr]^{1/2}\biggl[\frac{P_\mathrm{e}}{P_\mathrm{norm}}\biggr]^{1/6}</math> |
<math>~=~</math> |
<math>~ \tilde\xi^{2} \tilde\theta_n( - \tilde\theta' ) </math> |
|
<math>~=~</math> |
<math>~ 3\ell^2 (1+\ell^2)^{-1/2} \frac{\ell}{\sqrt{3}} (1+\ell^2)^{-3/2} </math> |
|
<math>~=~</math> |
<math>~ \sqrt{3}\ell^3 (1+\ell^2)^{-2} </math> |
We can therefore write,
<math>~(1+\ell^2)^{2}</math> |
<math>~=~</math> |
<math>~ p_0\ell^3 </math> |
<math>~\Rightarrow~~~\ell^4 - p_0\ell^3 + 2\ell^2 + 1</math> |
<math>~=~</math> |
<math>~ 0 \, , </math> |
where,
<math>p_0 \equiv \biggl[ \frac{\pi}{2\cdot 3^2}\biggr]^{-1/2}\biggl[\frac{P_\mathrm{e}}{P_\mathrm{norm}}\biggr]^{-1/6}</math>
So, in essence, we seek two real roots of this quartic equation that are near <math>~P_\mathrm{max}</math>, that is, that are near <math>~\ell = \sqrt{3}</math> — where <math>~p_0 = (2^8/3^3)^{1/2}</math>.
Because we are hunting for equilibrium configurations near <math>~P_\mathrm{max}</math>, it makes sense to make the variable substitution,
<math>~\ell</math> |
<math>~\rightarrow</math> |
<math>~\sqrt{3}(1+\epsilon) \, ,</math> |
and look for pairs of values of <math>~|\epsilon| \ll 1</math> (both real, but one positive and the other negative).
<math>~0</math> |
<math>~=~</math> |
<math>~3^2(1+\epsilon)^4 - 3^{3/2}p_0(1+\epsilon)^3 + 6(1+\epsilon)^2 + 1</math> |
|
<math>~=~</math> |
<math>~ 3^2\biggl[1 + 4\epsilon + 6\epsilon^2 + 4\epsilon^3 + \epsilon^4\biggr] - 3^{3/2}p_0\biggl[ 1+ 3\epsilon + 3\epsilon^2 + \epsilon^3 )\biggr] + 6\biggl[1 + 2\epsilon + \epsilon^2\biggr] + 1 </math> |
|
<math>~=~</math> |
<math>~ \epsilon^4 \biggl[ 9 \biggr] +\epsilon^3 \biggl[ 36 - 3^{3/2}p_0 \biggr] +\epsilon^2 \biggl[ 54 - 3^{5/2}p_0 + 6 \biggr] +\epsilon \biggl[36 - 3^{5/2}p_0 + 12 \biggr] +1 \, . </math> |
And, because we will only be examining values of the external pressure that are less than <math>~P_\mathrm{max}</math>, and we know that at the point of maximum pressure, <math>~3^{3/2}p_0 = 16</math>, it makes sense to make the substitution,
<math>~3^{3/2}p_0 ~~~\rightarrow ~~~ (16-\delta p_0) \, .</math>
Hence, for a fixed choice of <math>~\delta p_0 </math> (reasonably small, and positive), we seek two real roots (one positive and the other negative) of the quartic relation,
<math>~0</math> |
<math>~=~</math> |
<math>~ 9\epsilon^4 +\epsilon^3 \biggl[ 36 - (16-\delta p_0) \biggr] +\epsilon^2 \biggl[ 60 - 3(16-\delta p_0) \biggr] +\epsilon \biggl[48 - 3(16-\delta p_0) \biggr] +1 </math> |
|
<math>~=~</math> |
<math>~ 9\epsilon^4 +\epsilon^3 (20+\delta p_0 ) +\epsilon^2 ( 12 + 3\delta p_0 ) +\epsilon (3\delta p_0) +1 \, . </math> |
Quartic Solution
Here, we will draw from the Wikipedia discussion of the quartic function. The generic form is,
<math>~0</math> |
<math>~=</math> |
<math>~ax^4 + bx^3 + cx^2 + dx + e \,.</math> |
Relating this to our specific quartic function, we should ultimately make the following assignments:
<math>~a</math> |
<math>~=</math> |
<math>~9</math> |
<math>~b</math> |
<math>~=</math> |
<math>~20 + \delta p_0</math> |
<math>~c</math> |
<math>~=</math> |
<math>~12 + 3\delta p_0 = 3(4+\delta p_0)</math> |
<math>~d</math> |
<math>~=</math> |
<math>~3 \delta p_0</math> |
<math>~e</math> |
<math>~=</math> |
<math>~1</math> |
We need to evaluate the following expressions:
<math>~p</math> |
<math>~\equiv</math> |
<math>~\frac{8ac-3b^2}{3a^2}</math> |
|
<math>~=</math> |
<math>~\frac{2^3 \cdot 3^3(4+\delta p_0)-3(20+\delta p_0)^2}{3^5}</math> |
<math>~q</math> |
<math>~\equiv</math> |
<math>~\frac{b^3 - 4abc + 8a^2d}{8a^3}</math> |
|
<math>~=</math> |
<math>~\frac{(20 + \delta p_0)^3 - 2^2\cdot 3^3(4+\delta p_0) (20 + \delta p_0) + 2^3\cdot 3^5\delta p_0}{2^3 \cdot 3^6}</math> |
<math>~\Delta_0</math> |
<math>~\equiv</math> |
<math>~c^2 - 3bd + 12ae</math> |
|
<math>~=</math> |
<math>~3^2(4+\delta p_0)^2 - 3^2\delta p_0 (20 + \delta p_0) + 2^2\cdot 3^3</math> |
<math>~\Delta_1</math> |
<math>~\equiv</math> |
<math>~2c^3 - 9bcd + 27b^2e+27ad^2 - 72ace</math> |
© 2014 - 2021 by Joel E. Tohline |