Difference between revisions of "User:Tohline/SSC/FreeEnergy/PolytropesEmbedded"
(→Free-Energy of Truncated Polytropes: Finished re-derivation of "case P" free-energy function) |
|||
Line 30: | Line 30: | ||
<math>~ | <math>~ | ||
- \biggl[\frac{3}{5}\cdot \frac{\tilde{\mathfrak{f}}_W}{\tilde{\mathfrak{f}}_M^2} \biggr] \frac{GM^2}{R} | - \biggl[\frac{3}{5}\cdot \frac{\tilde{\mathfrak{f}}_W}{\tilde{\mathfrak{f}}_M^2} \biggr] \frac{GM^2}{R} | ||
+ \biggl[\biggl(\frac{3}{4\pi}\biggr)^{1/n} \frac{\tilde{\mathfrak{f}}_A}{\tilde{\mathfrak{\mathfrak{f}}}_M^{(n+1)/n}} \biggr] \frac{nKM^{(n+1)/n}}{R^{3/n}} | |||
+ \frac{4\pi}{3} \cdot P_e R^3 | + \frac{4\pi}{3} \cdot P_e R^3 | ||
\, ,</math> | \, ,</math> | ||
Line 230: | Line 230: | ||
<math> | <math> | ||
\mathfrak{G}_{K,M}^* \equiv \frac{\mathfrak{G}_{K,M}}{E_\mathrm{norm}} = | \mathfrak{G}_{K,M}^* \equiv \frac{\mathfrak{G}_{K,M}}{E_\mathrm{norm}} = | ||
-3A\biggl(\frac{R}{R_\mathrm{norm}}\biggr)^{-1} | -3A\biggl(\frac{R}{R_\mathrm{norm}}\biggr)^{-1} +~ nB \biggl(\frac{R}{R_\mathrm{norm}}\biggr)^{-3/n} | ||
+~ \biggl( \frac{4\pi}{3} \biggr) \frac{P_e}{P_\mathrm{norm}} \biggl(\frac{R}{R_\mathrm{norm}}\biggr)^3 \, , | +~ \biggl( \frac{4\pi}{3} \biggr) \frac{P_e}{P_\mathrm{norm}} \biggl(\frac{R}{R_\mathrm{norm}}\biggr)^3 \, , | ||
</math> | </math> | ||
Line 309: | Line 309: | ||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
<math>~E_\mathrm{SWS} \equiv \frac{GM_\mathrm{SWS}^2}{R_\mathrm{SWS}}</math> | <math>~E_\mathrm{SWS} \equiv \biggl( \frac{n}{n+1} \biggr) \frac{GM_\mathrm{SWS}^2}{R_\mathrm{SWS}}</math> | ||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
Line 316: | Line 316: | ||
<td align="left"> | <td align="left"> | ||
<math>~ | <math>~ | ||
\biggl( \frac{n+1}{n} \biggr)^{ | \biggl( \frac{n+1}{n} \biggr)^{3/2} G^{-3/2}K^{3n/(n+1)} P_\mathrm{e}^{(5-n)/[2(n+1)]} \, .</math> | ||
</td> | </td> | ||
</tr> | </tr> | ||
Line 322: | Line 322: | ||
</div> | </div> | ||
After implementing these normalizations | After implementing these normalizations — see our [[User:Tohline/SSC/Virial/PolytropesEmbeddedOutline#Our_Case_M_Analysis|accompanying analysis]] for details — the expression that describes the P<sub>1</sub> Free-Energy surface is, | ||
<div align="center"> | <div align="center"> | ||
<table border="0" cellpadding="5" align="center"> | <table border="0" cellpadding="5" align="center"> | ||
Line 333: | Line 333: | ||
<math>~=</math> | <math>~=</math> | ||
</td> | </td> | ||
<!-- HIDE LONG RE-DERIVATION ... | |||
<td align="left"> | <td align="left"> | ||
<math>~ | <math>~ | ||
\biggl\{\biggl( \frac{n+1}{n} \biggr)^{ | \biggl\{\biggl( \frac{n+1}{n} \biggr)^{3/2} G^{-3/2}K^{3n/(n+1)} P_\mathrm{e}^{(5-n)/[2(n+1)]} \biggr\}^{-1} | ||
</math> | </math> | ||
</td> | </td> | ||
Line 350: | Line 351: | ||
<math>~ | <math>~ | ||
\times \biggl\{- \biggl[\frac{3}{5}\cdot \frac{\tilde{\mathfrak{f}}_W}{\tilde{\mathfrak{f}}_M^2} \biggr] \frac{GM^2}{R} | \times \biggl\{- \biggl[\frac{3}{5}\cdot \frac{\tilde{\mathfrak{f}}_W}{\tilde{\mathfrak{f}}_M^2} \biggr] \frac{GM^2}{R} | ||
+ \biggl[\biggl(\frac{3}{4\pi}\biggr)^{1/n} \frac{\tilde{\mathfrak{f}}_A}{\tilde{\mathfrak{\mathfrak{f}}}_M^{(n+1)/n}} \biggr] \frac{nKM^{(n+1)/n}}{R^{3/n}} | |||
+ \frac{4\pi}{3} \cdot P_e R^3 | + \frac{4\pi}{3} \cdot P_e R^3 | ||
\biggr\} | \biggr\} | ||
Line 366: | Line 367: | ||
<td align="left"> | <td align="left"> | ||
<math>~- | <math>~- | ||
\biggl( \frac{n}{n+1} \biggr)^{ | \biggl( \frac{n}{n+1} \biggr)^{3/2} G^{3/2}K^{-3n/(n+1)} P_\mathrm{e}^{(n-5)/[2(n+1)]} | ||
</math> | </math> | ||
</td> | </td> | ||
Line 381: | Line 382: | ||
<math>~ | <math>~ | ||
\times \biggl\{\biggl[\frac{3}{5}\cdot \frac{\tilde{\mathfrak{f}}_W}{\tilde{\mathfrak{f}}_M^2} \biggr] \frac{GM^2}{R} | \times \biggl\{\biggl[\frac{3}{5}\cdot \frac{\tilde{\mathfrak{f}}_W}{\tilde{\mathfrak{f}}_M^2} \biggr] \frac{GM^2}{R} | ||
- \biggl[\biggl(\frac{3}{4\pi}\biggr)^{1/n} \frac{\tilde{\mathfrak{f}}_A}{\tilde{\mathfrak{\mathfrak{f}}}_M^{(n+1)/n}} \biggr] \frac{nKM^{(n+1)/n}}{R^{3/n}} | |||
- \frac{4\pi}{3} \cdot P_e R^3 | - \frac{4\pi}{3} \cdot P_e R^3 | ||
\biggr\} | \biggr\} | ||
Line 397: | Line 398: | ||
<td align="left"> | <td align="left"> | ||
<math>~- | <math>~- | ||
\biggl( \frac{n}{n+1} \biggr)^{ | \biggl( \frac{n}{n+1} \biggr)^{3/2} G^{3/2}K^{-3n/(n+1)} P_\mathrm{e}^{(n-5)/[2(n+1)]} | ||
</math> | </math> | ||
</td> | </td> | ||
Line 425: | Line 426: | ||
<td align="left"> | <td align="left"> | ||
<math>~ | <math>~ | ||
- \biggl[n\biggl(\frac{3}{4\pi}\biggr)^{1/n} \frac{\tilde{\mathfrak{f}}_A}{\tilde{\mathfrak{\mathfrak{f}}}_M^{(n+1)/n}} \biggr] \biggl(\frac{M}{M_\mathrm{SWS}}\biggr)^{(n+1)/n} \biggl(\frac{R_\mathrm{SWS}}{R}\biggr)^{3/n} | |||
\biggl[K M_\mathrm{SWS}^{(n+1)/n} R_\mathrm{SWS}^{-3/n} \biggr] | \biggl[K M_\mathrm{SWS}^{(n+1)/n} R_\mathrm{SWS}^{-3/n} \biggr] | ||
</math> | </math> | ||
Line 455: | Line 456: | ||
<td align="left"> | <td align="left"> | ||
<math>~- | <math>~- | ||
\biggl( \frac{n}{n+1} \biggr)^{ | \biggl( \frac{n}{n+1} \biggr)^{3/2} G^{3/2}K^{-3n/(n+1)} P_\mathrm{e}^{(n-5)/[2(n+1)]} | ||
</math> | </math> | ||
</td> | </td> | ||
Line 484: | Line 485: | ||
<td align="left"> | <td align="left"> | ||
<math>~ | <math>~ | ||
- \biggl[n\biggl(\frac{3}{4\pi}\biggr)^{1/n} \frac{\tilde{\mathfrak{f}}_A}{\tilde{\mathfrak{\mathfrak{f}}}_M^{(n+1)/n}} \biggr] | |||
\biggl(\frac{M}{M_\mathrm{SWS}}\biggr)^{(n+1)/n} \biggl(\frac{R_\mathrm{SWS}}{R}\biggr)^{3/n} | \biggl(\frac{M}{M_\mathrm{SWS}}\biggr)^{(n+1)/n} \biggl(\frac{R_\mathrm{SWS}}{R}\biggr)^{3/n} | ||
K \biggl[ \biggl( \frac{n+1}{nG} \biggr)^{3/2} K^{2n/(n+1)} P_\mathrm{e}^{(3-n)/[2(n+1)]} \biggr]^{(n+1)/n} \biggl[ \biggl( \frac{n+1}{nG} \biggr)^{1/2} K^{n/(n+1)} P_\mathrm{e}^{(1-n)/[2(n+1)]} \biggr]^{-3/n} | K \biggl[ \biggl( \frac{n+1}{nG} \biggr)^{3/2} K^{2n/(n+1)} P_\mathrm{e}^{(3-n)/[2(n+1)]} \biggr]^{(n+1)/n} \biggl[ \biggl( \frac{n+1}{nG} \biggr)^{1/2} K^{n/(n+1)} P_\mathrm{e}^{(1-n)/[2(n+1)]} \biggr]^{-3/n} | ||
Line 521: | Line 522: | ||
<td align="left"> | <td align="left"> | ||
<math>~- | <math>~- | ||
\biggl( \frac{n}{n+1} \biggr)^{ | \biggl( \frac{n}{n+1} \biggr)^{3/2} G^{3/2}K^{-3n/(n+1)} P_\mathrm{e}^{(n-5)/[2(n+1)]} | ||
</math> | </math> | ||
</td> | </td> | ||
Line 551: | Line 552: | ||
<td align="left"> | <td align="left"> | ||
<math>~ | <math>~ | ||
- \biggl[n\biggl(\frac{3}{4\pi}\biggr)^{1/n} \frac{\tilde{\mathfrak{f}}_A}{\tilde{\mathfrak{\mathfrak{f}}}_M^{(n+1)/n}} \biggr] | |||
\biggl(\frac{M}{M_\mathrm{SWS}}\biggr)^{(n+1)/n} \biggl(\frac{R_\mathrm{SWS}}{R}\biggr)^{3/n} | \biggl(\frac{M}{M_\mathrm{SWS}}\biggr)^{(n+1)/n} \biggl(\frac{R_\mathrm{SWS}}{R}\biggr)^{3/n} | ||
K \biggl[ \biggl( \frac{n+1}{nG} \biggr)^{3(n+1)/(2n)} K^{2} P_\mathrm{e}^{(3-n)/(2n)} \biggr] | K \biggl[ \biggl( \frac{n+1}{nG} \biggr)^{3(n+1)/(2n)} K^{2} P_\mathrm{e}^{(3-n)/(2n)} \biggr] | ||
Line 583: | Line 584: | ||
<td align="left"> | <td align="left"> | ||
<math>~- | <math>~- | ||
\biggl( \frac{n}{n+1} \biggr)^{ | \biggl( \frac{n}{n+1} \biggr)^{3/2} G^{3/2}K^{-3n/(n+1)} P_\mathrm{e}^{(n-5)/[2(n+1)]} | ||
</math> | </math> | ||
</td> | </td> | ||
Line 612: | Line 613: | ||
<td align="left"> | <td align="left"> | ||
<math>~ | <math>~ | ||
- \biggl[n\biggl(\frac{3}{4\pi}\biggr)^{1/n} \frac{\tilde{\mathfrak{f}}_A}{\tilde{\mathfrak{\mathfrak{f}}}_M^{(n+1)/n}} \biggr] | |||
\biggl(\frac{M}{M_\mathrm{SWS}}\biggr)^{(n+1)/n} \biggl(\frac{R_\mathrm{SWS}}{R}\biggr)^{3/n} | \biggl(\frac{M}{M_\mathrm{SWS}}\biggr)^{(n+1)/n} \biggl(\frac{R_\mathrm{SWS}}{R}\biggr)^{3/n} | ||
\biggl[ \biggl( \frac{n+1}{n} \biggr)^{3/2} G^{-3/2} K^{3n/(n+1)} P_\mathrm{e}^{(5-n)/[2(n+1)]} \biggr] | \biggl[ \biggl( \frac{n+1}{n} \biggr)^{3/2} G^{-3/2} K^{3n/(n+1)} P_\mathrm{e}^{(5-n)/[2(n+1)]} \biggr] | ||
Line 643: | Line 644: | ||
<td align="left"> | <td align="left"> | ||
<math>~- | <math>~- | ||
\biggl[\frac{3}{5}\cdot \frac{\tilde{\mathfrak{f}}_W}{\tilde{\mathfrak{f}}_M^2} \biggr] \biggl( \frac{M}{M_\mathrm{SWS}}\biggr)^2 | \biggl[\frac{3}{5}\cdot \frac{\tilde{\mathfrak{f}}_W}{\tilde{\mathfrak{f}}_M^2} \biggr] \biggl( \frac{n+1}{n} \biggr) \biggl( \frac{M}{M_\mathrm{SWS}}\biggr)^2 | ||
\biggl(\frac{R_\mathrm{SWS}}{R}\biggr) | \biggl(\frac{R_\mathrm{SWS}}{R}\biggr) | ||
</math> | </math> | ||
</td> | </td> | ||
Line 658: | Line 659: | ||
<td align="left"> | <td align="left"> | ||
<math>~ | <math>~ | ||
+ \biggl[n\biggl(\frac{3}{4\pi}\biggr)^{1/n} \frac{\tilde{\mathfrak{f}}_A}{\tilde{\mathfrak{\mathfrak{f}}}_M^{(n+1)/n}} \biggr] | |||
\biggl(\frac{M}{M_\mathrm{SWS}}\biggr)^{(n+1)/n} \biggl(\frac{R_\mathrm{SWS}}{R}\biggr)^{3/n} | \biggl(\frac{M}{M_\mathrm{SWS}}\biggr)^{(n+1)/n} \biggl(\frac{R_\mathrm{SWS}}{R}\biggr)^{3/n} | ||
\biggl( \frac{ | + \frac{4\pi}{3} \cdot \biggl( \frac{R}{R_\mathrm{SWS}}\biggr)^3 | ||
+ \frac{4\pi}{ | </math> | ||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~- | |||
\biggl[\frac{3}{5}\cdot \frac{\tilde{\mathfrak{f}}_W}{\tilde{\mathfrak{f}}_M^2} \biggl( \frac{n+1}{n} \biggr)\biggr] \biggl( \frac{M}{M_\mathrm{SWS}}\biggr)^2 | |||
\biggl(\frac{R}{R_\mathrm{SWS}}\biggr)^{-1} | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
| |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
+ \biggl[n\biggl(\frac{3}{4\pi}\biggr)^{1/n} \frac{\tilde{\mathfrak{f}}_A}{\tilde{\mathfrak{\mathfrak{f}}}_M^{(n+1)/n}} \biggr] | |||
\biggl(\frac{M}{M_\mathrm{SWS}}\biggr)^{(n+1)/n} \biggl(\frac{R}{R_\mathrm{SWS}}\biggr)^{-3/n} | |||
+ \frac{4\pi}{3} \cdot \biggl( \frac{R}{R_\mathrm{SWS}}\biggr)^3 | |||
</math> | </math> | ||
</td> | </td> | ||
</tr> | </tr> | ||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
END SUPPRESSION OF LONG DERIVATION --> | |||
<td align="left"> | |||
<math>~- 3A\biggl( \frac{n+1}{n} \biggr)\biggl( \frac{M}{M_\mathrm{SWS}}\biggr)^2 \biggl(\frac{R}{R_\mathrm{SWS}}\biggr)^{-1} | |||
+ nB \biggl(\frac{M}{M_\mathrm{SWS}}\biggr)^{(n+1)/n} \biggl(\frac{R}{R_\mathrm{SWS}}\biggr)^{-3/n} | |||
+ \frac{4\pi}{3} \cdot \biggl( \frac{R}{R_\mathrm{SWS}}\biggr)^3 | |||
</math> | |||
</td> | |||
</tr> | |||
</table> | </table> | ||
</div> | </div> |
Revision as of 15:47, 13 July 2016
Free-Energy of Truncated Polytropes
| Tiled Menu | Tables of Content | Banner Video | Tohline Home Page | |
In this case, the Gibbs-like free energy is given by the sum of three separate energies,
<math>~\mathfrak{G}</math> |
<math>~=</math> |
<math>~W_\mathrm{grav} + \mathfrak{S}_\mathrm{therm} + P_eV</math> |
|
<math>~=</math> |
<math>~ - \biggl[\frac{3}{5}\cdot \frac{\tilde{\mathfrak{f}}_W}{\tilde{\mathfrak{f}}_M^2} \biggr] \frac{GM^2}{R} + \biggl[\biggl(\frac{3}{4\pi}\biggr)^{1/n} \frac{\tilde{\mathfrak{f}}_A}{\tilde{\mathfrak{\mathfrak{f}}}_M^{(n+1)/n}} \biggr] \frac{nKM^{(n+1)/n}}{R^{3/n}} + \frac{4\pi}{3} \cdot P_e R^3 \, ,</math> |
where, as derived elsewhere,
Structural Form Factors for Pressure-Truncated Polytropes <math>~(n \ne 5)</math> |
|||||||||
---|---|---|---|---|---|---|---|---|---|
|
|||||||||
As we have shown separately, for the singular case of <math>~n = 5</math>,
where, <math>~\ell \equiv \tilde\xi/\sqrt{3} </math> |
In general, then, the warped free-energy surface drapes across a four-dimensional parameter "plane" such that,
<math>~\mathfrak{G}</math> |
<math>~=</math> |
<math>~\mathfrak{G}(R, K, M, P_e) \, .</math> |
In order to effectively visualize the structure of this free-energy surface, we will reduce the parameter space from four to two, in two separate ways: First, we will hold constant the parameter pair, <math>~(K,M)</math>; adopting Kimura's (1981b) nomenclature, we will refer to the resulting function, <math>~\mathfrak{G}_{K,M}(R,P_e)</math>, as an "M1 Free-Energy Surface" because the mass is being held constant. Second, we will hold constant the parameter pair, <math>~(K,P_e)</math>, and examine the resulting "P1 Free-Energy Surface," <math>~\mathfrak{G}_{K,P_e}(R,M)</math>.
The M1 Free-Energy Surface
It is useful to rewrite the free-energy function in terms of dimensionless parameters. Here we need to pick normalizations for energy, radius, and pressure that are expressed in terms of the gravitational constant, <math>~G</math>, and the two fixed parameters, <math>~K</math> and <math>~M</math>. We have chosen to use,
<math>~R_\mathrm{norm}</math> |
<math>~\equiv</math> |
<math>~\biggl[ \biggl( \frac{G}{K} \biggr)^n M_\mathrm{tot}^{n-1} \biggr]^{1/(n-3)} \, ,</math> |
<math>~P_\mathrm{norm}</math> |
<math>~\equiv</math> |
<math>~\biggl[ \frac{K^{4n}}{G^{3(n+1)} M_\mathrm{tot}^{2(n+1)}} \biggr]^{1/(n-3)} \, ,</math> |
which, as is detailed in an accompanying discussion, are similar but not identical to the normalizations used by Horedt (1970) and by Whitworth (1981). The self-consistent energy normalization is,
<math>~E_\mathrm{norm}</math> |
<math>~\equiv</math> |
<math>~P_\mathrm{norm} R^3_\mathrm{norm} \, .</math> |
As we have demonstrated elsewhere, after implementing these normalizations, the expression that describes the M1 Free-Energy surface is,
<math> \mathfrak{G}_{K,M}^* \equiv \frac{\mathfrak{G}_{K,M}}{E_\mathrm{norm}} = -3A\biggl(\frac{R}{R_\mathrm{norm}}\biggr)^{-1} +~ nB \biggl(\frac{R}{R_\mathrm{norm}}\biggr)^{-3/n} +~ \biggl( \frac{4\pi}{3} \biggr) \frac{P_e}{P_\mathrm{norm}} \biggl(\frac{R}{R_\mathrm{norm}}\biggr)^3 \, , </math>
where the constants,
<math>~A</math> |
<math>~\equiv</math> |
<math>\frac{1}{5} \cdot \frac{\tilde{\mathfrak{f}}_W}{\tilde{\mathfrak{f}}_M^2} \, ,</math> |
<math>~B</math> |
<math>~\equiv</math> |
<math>~ \biggl(\frac{4\pi}{3} \biggr)^{-1/n} \frac{\tilde{\mathfrak{f}}_A}{\tilde{\mathfrak{f}}_M^{(n+1)/n}} \, . </math> |
Given the polytropic index, <math>~n</math>, we expect to obtain a different M1 free-energy surface for each choice of the dimensionless truncation radius, <math>~\tilde\xi</math>; this choice will imply corresponding values for <math>~\tilde\theta</math> and <math>~\tilde\theta^'</math> and, hence also, corresponding (constant) values of the coefficients, <math>~A</math> and <math>~B</math>.
The P1 Free-Energy Surface
Again, it is useful to rewrite the free-energy function in terms of dimensionless parameters. But here we need to pick normalizations for energy, radius, and mass that are expressed in terms of the gravitational constant, <math>~G</math>, and the two fixed parameters, <math>~K</math> and <math>~P_e</math>. As is detailed in an accompanying discussion, we have chosen to use the normalizations defined by Stahler (1983), namely,
<math>~R_\mathrm{SWS}</math> |
<math>~\equiv</math> |
<math>~\biggl( \frac{n+1}{nG} \biggr)^{1/2} K^{n/(n+1)} P_\mathrm{e}^{(1-n)/[2(n+1)]} \, ,</math> |
<math>~M_\mathrm{SWS}</math> |
<math>~\equiv</math> |
<math>~\biggl( \frac{n+1}{nG} \biggr)^{3/2} K^{2n/(n+1)} P_\mathrm{e}^{(3-n)/[2(n+1)]} \, ,</math> |
The self-consistent energy normalization is,
<math>~E_\mathrm{SWS} \equiv \biggl( \frac{n}{n+1} \biggr) \frac{GM_\mathrm{SWS}^2}{R_\mathrm{SWS}}</math> |
<math>~=</math> |
<math>~ \biggl( \frac{n+1}{n} \biggr)^{3/2} G^{-3/2}K^{3n/(n+1)} P_\mathrm{e}^{(5-n)/[2(n+1)]} \, .</math> |
After implementing these normalizations — see our accompanying analysis for details — the expression that describes the P1 Free-Energy surface is,
<math>~\mathfrak{G}_{K,P_e}^* \equiv \frac{\mathfrak{G}_{K,P_e}}{E_\mathrm{SWS}}</math> |
<math>~=</math> |
<math>~- 3A\biggl( \frac{n+1}{n} \biggr)\biggl( \frac{M}{M_\mathrm{SWS}}\biggr)^2 \biggl(\frac{R}{R_\mathrm{SWS}}\biggr)^{-1} + nB \biggl(\frac{M}{M_\mathrm{SWS}}\biggr)^{(n+1)/n} \biggl(\frac{R}{R_\mathrm{SWS}}\biggr)^{-3/n} + \frac{4\pi}{3} \cdot \biggl( \frac{R}{R_\mathrm{SWS}}\biggr)^3 </math> |
See Also
© 2014 - 2021 by Joel E. Tohline |