Difference between revisions of "User:Tohline/SSC/FreeEnergy/PolytropesEmbedded"

From VistrailsWiki
Jump to navigation Jump to search
(Progress)
(→‎Free-Energy of Truncated Polytropes: Insert expressions for structural form factors, including for n=5)
Line 28: Line 28:
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>~- \biggl[\frac{3}{5}\cdot \frac{\tilde{f}_W}{\tilde{f}_M^2} \biggr] \frac{GM^2}{R}  
<math>~- \biggl[\frac{3}{5}\cdot \frac{\tilde{\mathfrak{f}}_W}{\tilde{\mathfrak{f}}_M^2} \biggr] \frac{GM^2}{R}  
- \biggl[\biggl(\frac{3}{4\pi}\biggr)^{1/n} \frac{\tilde{f}_A}{\tilde{f}_M^{(n+1)/n}}  \biggr] \frac{KM^{(n+1)/n}}{R^{3/n}}
- \biggl[\biggl(\frac{3}{4\pi}\biggr)^{1/n} \frac{\tilde{\mathfrak{f}}_A}{\tilde{\mathfrak{\mathfrak{f}}}_M^{(n+1)/n}}  \biggr] \frac{KM^{(n+1)/n}}{R^{3/n}}
+ \frac{4\pi}{3} \cdot P_e R^3 \, ,</math>
+ \frac{4\pi}{3} \cdot P_e R^3 \, ,</math>
   </td>
   </td>
Line 41: Line 41:
<tr>
<tr>
<th align="center" colspan="1">
<th align="center" colspan="1">
Structural Form Factors for <font color="red">Isolated</font> Polytropes
Structural Form Factors for <font color="red">Pressure-Truncated</font> Polytropes <math>~(n \ne 5)</math>
</th>
<th align="center" colspan="1">
Structural Form Factors for <font color="red">Pressure-Truncated</font> Polytropes
</th>
</th>
</tr>
</tr>
Line 59: Line 56:
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>~ \biggl[ - \frac{3\theta^'}{\xi} \biggr]_{\xi_1} </math>
<math>~ \biggl( - \frac{3\tilde\theta^'}{\tilde\xi} \biggr) </math>
   </td>
   </td>
</tr>
</tr>
Line 65: Line 62:
<tr>
<tr>
   <td align="right">
   <td align="right">
<math>\tilde\mathfrak{f}_W </math>
<math>\tilde\mathfrak{f}_W</math>
   </td>
   </td>
   <td align="center">
   <td align="center">
<math>~=</math>
<math>~=</math>
   </td>
   </td>
  <td align="left">
<td align="left">
<math>~\frac{3^2\cdot 5}{5-n} \biggl[ \frac{\theta^'}{\xi} \biggr]^2_{\xi_1} </math>
<math>\frac{3\cdot 5}{(5-n)\tilde\xi^2}  
\biggl[\tilde\theta^{n+1} + 3 (\tilde\theta^')^2 - \tilde\mathfrak{f}_M \tilde\theta \biggr]  
</math>
   </td>
   </td>
</tr>
</tr>
Line 77: Line 76:
<tr>
<tr>
   <td align="right">
   <td align="right">
<math>\tilde\mathfrak{f}_A </math>
<math>~
\tilde\mathfrak{f}_A
</math>
   </td>
   </td>
   <td align="center">
   <td align="center">
Line 83: Line 84:
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>
<math>~\frac{1}{(5-n)} \biggl\{ 6\tilde\theta^{n+1} +  (n+1)
\frac{3(n+1) }{(5-n)} ~\biggl[ \theta^' \biggr]^2_{\xi_1}  
\biggl[3 (\tilde\theta^')^2 - \tilde\mathfrak{f}_M \tilde\theta \biggr] \biggr\}
</math>
</math>
   </td>
   </td>
Line 91: Line 92:


</td>
</td>
</tr>
<tr>
  <td align="left" colspan="1">
As [[User:Tohline/SSC/Virial/FormFactors#Summary_.28n.3D5.29|we have shown separately]], for the singular case of <math>~n = 5</math>,
<div align="center">
<table border="0" cellpadding="5" align="center">


<td align="center">
<table border="0" cellpadding="5" align="center">
<tr>
<tr>
   <td align="right">
   <td align="right">
<math>~\tilde\mathfrak{f}_M</math>
<math>~\mathfrak{f}_M</math>
   </td>
   </td>
   <td align="center">
   <td align="center">
Line 103: Line 107:
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>~ \biggl( - \frac{3\tilde\theta^'}{\tilde\xi} \biggr) </math>
<math>~
( 1 + \ell^2 )^{-3/2}
</math>
   </td>
   </td>
</tr>
</tr>
Line 109: Line 115:
<tr>
<tr>
   <td align="right">
   <td align="right">
<math>\tilde\mathfrak{f}_W</math>
<math>~\mathfrak{f}_W</math>
   </td>
   </td>
   <td align="center">
   <td align="center">
<math>~=</math>
<math>~=</math>
   </td>
   </td>
<td align="left">
  <td align="left">
<math>\frac{3\cdot 5}{(5-n)\tilde\xi^2}  
<math>
\biggl[\tilde\theta^{n+1} + 3 (\tilde\theta^')^2 - \tilde\mathfrak{f}_M \tilde\theta \biggr]  
\frac{5}{2^4} \cdot \ell^{-5}
\biggl[ \ell \biggl( \ell^4 - \frac{8}{3}\ell^2 - 1 \biggr)(1 + \ell^2)^{-3} + \tan^{-1}(\ell ) \biggr]
</math>
</math>
   </td>
   </td>
Line 123: Line 130:
<tr>
<tr>
   <td align="right">
   <td align="right">
<math>~
<math>~\mathfrak{f}_A</math>
\tilde\mathfrak{f}_A
</math>
   </td>
   </td>
   <td align="center">
   <td align="center">
Line 131: Line 136:
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>~\frac{1}{(5-n)} \biggl\{ 6\tilde\theta^{n+1} + (n+1)
<math>~
\biggl[3 (\tilde\theta^')^2 - \tilde\mathfrak{f}_M \tilde\theta \biggr] \biggr\}
\frac{3}{2^3} \ell^{-3}  [ \tan^{-1}(\ell ) + \ell (\ell^2-1) (1+\ell^2)^{-2} ]
</math>
</math>
   </td>
   </td>
</tr>
</tr>
</table>
</table>
 
</div>
</td>
where, <math>~\ell \equiv \tilde\xi/\sqrt{3} </math>
  </td>
</tr>
</tr>
</table>
</table>
Line 162: Line 168:
</div>
</div>


In order to effectively visualize the structure of this free-energy surface, we will reduce the parameter space from four to two, in two separate ways:  First, we will hold constant the parameter pair, <math>~(K,M)</math>; adopting [http://adsabs.harvard.edu/abs/1981PASJ...33..299K Kimura's (1981b)] nomenclature, we will refer to the resulting function, <math>~\mathfrak{G}_{K,M}(R,P_e)</math> as an "M<sub>1</sub> Free-Energy Surface.Second, we will hold constant the parameter pair, <math>~(K,P_e)</math>, and examine the resulting "P<sub>1</sub> Free-Energy Surface," <math>~\mathfrak{G}_{K,P_e}(R,M)</math>.
In order to effectively visualize the structure of this free-energy surface, we will reduce the parameter space from four to two, in two separate ways:  First, we will hold constant the parameter pair, <math>~(K,M)</math>; adopting [http://adsabs.harvard.edu/abs/1981PASJ...33..299K Kimura's (1981b)] nomenclature, we will refer to the resulting function, <math>~\mathfrak{G}_{K,M}(R,P_e)</math>, as an "M<sub>1</sub> Free-Energy Surface" because the mass is being held constant.   Second, we will hold constant the parameter pair, <math>~(K,P_e)</math>, and examine the resulting "P<sub>1</sub> Free-Energy Surface," <math>~\mathfrak{G}_{K,P_e}(R,M)</math>.


==The M<sub>1</sub> Free-Energy Surface==
==The M<sub>1</sub> Free-Energy Surface==
Line 191: Line 197:
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>~\biggl[ \frac{K^{4n}}{G^{3(n+1)} M_\mathrm{tot}^{2(n+1)}} \biggr]^{1/(n-3)}  \, .</math>
<math>~\biggl[ \frac{K^{4n}}{G^{3(n+1)} M_\mathrm{tot}^{2(n+1)}} \biggr]^{1/(n-3)}  \, ,</math>
   </td>
   </td>
</tr>
</tr>
Line 198: Line 204:
</div>
</div>


which, as is detailed in an [[User:Tohline/SphericallySymmetricConfigurations/Virial#Choices_Made_by_Other_Researchers|accompanying discussion]], are similar, but not identical, to the normalizations used by [http://adsabs.harvard.edu/abs/1970MNRAS.151...81H Horedt (1970)] and by [http://adsabs.harvard.edu/abs/1981MNRAS.195..967W Whitworth (1981)].  The self-consistent energy normalization is,
which, as is detailed in an [[User:Tohline/SphericallySymmetricConfigurations/Virial#Choices_Made_by_Other_Researchers|accompanying discussion]], are similar but not identical to the normalizations used by [http://adsabs.harvard.edu/abs/1970MNRAS.151...81H Horedt (1970)] and by [http://adsabs.harvard.edu/abs/1981MNRAS.195..967W Whitworth (1981)].  The self-consistent energy normalization is,


<div align="center">
<div align="center">
Line 237: Line 243:
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>\frac{1}{5} \cdot \frac{\tilde{f}_W}{\tilde{f}_M^2} \, ,</math>
<math>\frac{1}{5} \cdot \frac{\tilde{\mathfrak{f}}_W}{\tilde{\mathfrak{f}}_M^2} \, ,</math>
   </td>
   </td>
</tr>
</tr>
Line 250: Line 256:
   <td align="left">
   <td align="left">
<math>~
<math>~
\biggl(\frac{4\pi}{3} \biggr)^{-1/n} \cdot \frac{\tilde{f}_A}{\tilde{f}_M^{(n+1)/n}}  
\biggl(\frac{4\pi}{3} \biggr)^{-1/n} \frac{\tilde{\mathfrak{f}}_A}{\tilde{\mathfrak{f}}_M^{(n+1)/n}} \, .
</math>
</math>
   </td>
   </td>
Line 257: Line 263:
</div>
</div>


 
Given the polytropic index, <math>~n</math>, we expect to obtain a different M<sub>1</sub> free-energy surface for each choice of the dimensionless truncation radius, <math>~\tilde\xi</math>; this choice will imply corresponding values for <math>~\tilde\theta</math> and <math>~\tilde\theta^'</math> and, hence also, corresponding (constant) values of the coefficients, <math>~A</math> and <math>~B</math>.


=See Also=
=See Also=

Revision as of 21:45, 12 July 2016

Free-Energy of Truncated Polytropes

Whitworth's (1981) Isothermal Free-Energy Surface
|   Tiled Menu   |   Tables of Content   |  Banner Video   |  Tohline Home Page   |


In this case, the Gibbs-like free energy is given by the sum of three separate energies,

<math>~\mathfrak{G}</math>

<math>~=</math>

<math>~W_\mathrm{grav} + \mathfrak{S}_\mathrm{therm} + P_eV</math>

 

<math>~=</math>

<math>~- \biggl[\frac{3}{5}\cdot \frac{\tilde{\mathfrak{f}}_W}{\tilde{\mathfrak{f}}_M^2} \biggr] \frac{GM^2}{R} - \biggl[\biggl(\frac{3}{4\pi}\biggr)^{1/n} \frac{\tilde{\mathfrak{f}}_A}{\tilde{\mathfrak{\mathfrak{f}}}_M^{(n+1)/n}} \biggr] \frac{KM^{(n+1)/n}}{R^{3/n}} + \frac{4\pi}{3} \cdot P_e R^3 \, ,</math>

where, as derived elsewhere,

Structural Form Factors for Pressure-Truncated Polytropes <math>~(n \ne 5)</math>

<math>~\tilde\mathfrak{f}_M</math>

<math>~=</math>

<math>~ \biggl( - \frac{3\tilde\theta^'}{\tilde\xi} \biggr) </math>

<math>\tilde\mathfrak{f}_W</math>

<math>~=</math>

<math>\frac{3\cdot 5}{(5-n)\tilde\xi^2} \biggl[\tilde\theta^{n+1} + 3 (\tilde\theta^')^2 - \tilde\mathfrak{f}_M \tilde\theta \biggr] </math>

<math>~ \tilde\mathfrak{f}_A </math>

<math>~=</math>

<math>~\frac{1}{(5-n)} \biggl\{ 6\tilde\theta^{n+1} + (n+1) \biggl[3 (\tilde\theta^')^2 - \tilde\mathfrak{f}_M \tilde\theta \biggr] \biggr\} </math>

As we have shown separately, for the singular case of <math>~n = 5</math>,

<math>~\mathfrak{f}_M</math>

<math>~=</math>

<math>~ ( 1 + \ell^2 )^{-3/2} </math>

<math>~\mathfrak{f}_W</math>

<math>~=</math>

<math>~ \frac{5}{2^4} \cdot \ell^{-5} \biggl[ \ell \biggl( \ell^4 - \frac{8}{3}\ell^2 - 1 \biggr)(1 + \ell^2)^{-3} + \tan^{-1}(\ell ) \biggr] </math>

<math>~\mathfrak{f}_A</math>

<math>~=</math>

<math>~ \frac{3}{2^3} \ell^{-3} [ \tan^{-1}(\ell ) + \ell (\ell^2-1) (1+\ell^2)^{-2} ] </math>

where, <math>~\ell \equiv \tilde\xi/\sqrt{3} </math>


In general, then, the warped free-energy surface drapes across a four-dimensional parameter "plane" such that,

<math>~\mathfrak{G}</math>

<math>~=</math>

<math>~\mathfrak{G}(R, K, M, P_e) \, .</math>

In order to effectively visualize the structure of this free-energy surface, we will reduce the parameter space from four to two, in two separate ways: First, we will hold constant the parameter pair, <math>~(K,M)</math>; adopting Kimura's (1981b) nomenclature, we will refer to the resulting function, <math>~\mathfrak{G}_{K,M}(R,P_e)</math>, as an "M1 Free-Energy Surface" because the mass is being held constant. Second, we will hold constant the parameter pair, <math>~(K,P_e)</math>, and examine the resulting "P1 Free-Energy Surface," <math>~\mathfrak{G}_{K,P_e}(R,M)</math>.

The M1 Free-Energy Surface

It is useful to rewrite the free-energy function in terms of dimensionless parameters. Here we need to pick normalizations for energy, radius, and pressure that are expressed in terms of the gravitational constant, <math>~G</math>, and the two fixed parameters, <math>~K</math> and <math>~M</math>. We have chosen to use,

<math>~R_\mathrm{norm}</math>

<math>~\equiv</math>

<math>~\biggl[ \biggl( \frac{G}{K} \biggr)^n M_\mathrm{tot}^{n-1} \biggr]^{1/(n-3)} \, ,</math>

<math>~P_\mathrm{norm}</math>

<math>~\equiv</math>

<math>~\biggl[ \frac{K^{4n}}{G^{3(n+1)} M_\mathrm{tot}^{2(n+1)}} \biggr]^{1/(n-3)} \, ,</math>

which, as is detailed in an accompanying discussion, are similar but not identical to the normalizations used by Horedt (1970) and by Whitworth (1981). The self-consistent energy normalization is,

<math>~E_\mathrm{norm}</math>

<math>~\equiv</math>

<math>~P_\mathrm{norm} R^3_\mathrm{norm} \, .</math>

As we have demonstrated elsewhere, after implementing these normalizations, the expression that describes the M1 Free-Energy surface is,

<math> \mathfrak{G}_{K,M}^* \equiv \frac{\mathfrak{G}_{K,M}}{E_\mathrm{norm}} = -3A\biggl(\frac{R}{R_\mathrm{norm}}\biggr)^{-1} -~ nB \biggl(\frac{R}{R_\mathrm{norm}}\biggr)^{-3/n} +~ \biggl( \frac{4\pi}{3} \biggr) \frac{P_e}{P_\mathrm{norm}} \biggl(\frac{R}{R_\mathrm{norm}}\biggr)^3 \, , </math>

where the constants,

<math>~A</math>

<math>~\equiv</math>

<math>\frac{1}{5} \cdot \frac{\tilde{\mathfrak{f}}_W}{\tilde{\mathfrak{f}}_M^2} \, ,</math>

<math>~B</math>

<math>~\equiv</math>

<math>~ \biggl(\frac{4\pi}{3} \biggr)^{-1/n} \frac{\tilde{\mathfrak{f}}_A}{\tilde{\mathfrak{f}}_M^{(n+1)/n}} \, . </math>

Given the polytropic index, <math>~n</math>, we expect to obtain a different M1 free-energy surface for each choice of the dimensionless truncation radius, <math>~\tilde\xi</math>; this choice will imply corresponding values for <math>~\tilde\theta</math> and <math>~\tilde\theta^'</math> and, hence also, corresponding (constant) values of the coefficients, <math>~A</math> and <math>~B</math>.

See Also


Whitworth's (1981) Isothermal Free-Energy Surface

© 2014 - 2021 by Joel E. Tohline
|   H_Book Home   |   YouTube   |
Appendices: | Equations | Variables | References | Ramblings | Images | myphys.lsu | ADS |
Recommended citation:   Tohline, Joel E. (2021), The Structure, Stability, & Dynamics of Self-Gravitating Fluids, a (MediaWiki-based) Vistrails.org publication, https://www.vistrails.org/index.php/User:Tohline/citation