Difference between revisions of "User:Tohline/SSC/FreeEnergy/PolytropesEmbedded"
(Progress) |
(→Free-Energy of Truncated Polytropes: Insert expressions for structural form factors, including for n=5) |
||
Line 28: | Line 28: | ||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math>~- \biggl[\frac{3}{5}\cdot \frac{\tilde{f}_W}{\tilde{f}_M^2} \biggr] \frac{GM^2}{R} | <math>~- \biggl[\frac{3}{5}\cdot \frac{\tilde{\mathfrak{f}}_W}{\tilde{\mathfrak{f}}_M^2} \biggr] \frac{GM^2}{R} | ||
- \biggl[\biggl(\frac{3}{4\pi}\biggr)^{1/n} \frac{\tilde{f}_A}{\tilde{f}_M^{(n+1)/n}} \biggr] \frac{KM^{(n+1)/n}}{R^{3/n}} | - \biggl[\biggl(\frac{3}{4\pi}\biggr)^{1/n} \frac{\tilde{\mathfrak{f}}_A}{\tilde{\mathfrak{\mathfrak{f}}}_M^{(n+1)/n}} \biggr] \frac{KM^{(n+1)/n}}{R^{3/n}} | ||
+ \frac{4\pi}{3} \cdot P_e R^3 \, ,</math> | + \frac{4\pi}{3} \cdot P_e R^3 \, ,</math> | ||
</td> | </td> | ||
Line 41: | Line 41: | ||
<tr> | <tr> | ||
<th align="center" colspan="1"> | <th align="center" colspan="1"> | ||
Structural Form Factors for <font color="red"> | Structural Form Factors for <font color="red">Pressure-Truncated</font> Polytropes <math>~(n \ne 5)</math> | ||
</th> | </th> | ||
</tr> | </tr> | ||
Line 59: | Line 56: | ||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math>~ \biggl | <math>~ \biggl( - \frac{3\tilde\theta^'}{\tilde\xi} \biggr) </math> | ||
</td> | </td> | ||
</tr> | </tr> | ||
Line 65: | Line 62: | ||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
<math>\tilde\mathfrak{f}_W </math> | <math>\tilde\mathfrak{f}_W</math> | ||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
<math>~=</math> | <math>~=</math> | ||
</td> | </td> | ||
<td align="left"> | |||
<math> | <math>\frac{3\cdot 5}{(5-n)\tilde\xi^2} | ||
\biggl[\tilde\theta^{n+1} + 3 (\tilde\theta^')^2 - \tilde\mathfrak{f}_M \tilde\theta \biggr] | |||
</math> | |||
</td> | </td> | ||
</tr> | </tr> | ||
Line 77: | Line 76: | ||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
<math>\tilde\mathfrak{f}_A | <math>~ | ||
\tilde\mathfrak{f}_A | |||
</math> | |||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
Line 83: | Line 84: | ||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math> | <math>~\frac{1}{(5-n)} \biggl\{ 6\tilde\theta^{n+1} + (n+1) | ||
\frac{ | \biggl[3 (\tilde\theta^')^2 - \tilde\mathfrak{f}_M \tilde\theta \biggr] \biggr\} | ||
</math> | </math> | ||
</td> | </td> | ||
Line 91: | Line 92: | ||
</td> | </td> | ||
</tr> | |||
<tr> | |||
<td align="left" colspan="1"> | |||
As [[User:Tohline/SSC/Virial/FormFactors#Summary_.28n.3D5.29|we have shown separately]], for the singular case of <math>~n = 5</math>, | |||
<div align="center"> | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
<math>~ | <math>~\mathfrak{f}_M</math> | ||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
Line 103: | Line 107: | ||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math>~ | <math>~ | ||
( 1 + \ell^2 )^{-3/2} | |||
</math> | |||
</td> | </td> | ||
</tr> | </tr> | ||
Line 109: | Line 115: | ||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
<math> | <math>~\mathfrak{f}_W</math> | ||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
<math>~=</math> | <math>~=</math> | ||
</td> | </td> | ||
<td align="left"> | |||
<math>\frac{ | <math>~ | ||
\biggl[\ | \frac{5}{2^4} \cdot \ell^{-5} | ||
\biggl[ \ell \biggl( \ell^4 - \frac{8}{3}\ell^2 - 1 \biggr)(1 + \ell^2)^{-3} + \tan^{-1}(\ell ) \biggr] | |||
</math> | </math> | ||
</td> | </td> | ||
Line 123: | Line 130: | ||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
<math>~ | <math>~\mathfrak{f}_A</math> | ||
</math> | |||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
Line 131: | Line 136: | ||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math>~\frac{ | <math>~ | ||
\frac{3}{2^3} \ell^{-3} [ \tan^{-1}(\ell ) + \ell (\ell^2-1) (1+\ell^2)^{-2} ] | |||
</math> | </math> | ||
</td> | </td> | ||
</tr> | </tr> | ||
</table> | </table> | ||
</div> | |||
</td> | where, <math>~\ell \equiv \tilde\xi/\sqrt{3} </math> | ||
</td> | |||
</tr> | </tr> | ||
</table> | </table> | ||
Line 162: | Line 168: | ||
</div> | </div> | ||
In order to effectively visualize the structure of this free-energy surface, we will reduce the parameter space from four to two, in two separate ways: First, we will hold constant the parameter pair, <math>~(K,M)</math>; adopting [http://adsabs.harvard.edu/abs/1981PASJ...33..299K Kimura's (1981b)] nomenclature, we will refer to the resulting function, <math>~\mathfrak{G}_{K,M}(R,P_e)</math> as an "M<sub>1</sub> Free-Energy Surface. | In order to effectively visualize the structure of this free-energy surface, we will reduce the parameter space from four to two, in two separate ways: First, we will hold constant the parameter pair, <math>~(K,M)</math>; adopting [http://adsabs.harvard.edu/abs/1981PASJ...33..299K Kimura's (1981b)] nomenclature, we will refer to the resulting function, <math>~\mathfrak{G}_{K,M}(R,P_e)</math>, as an "M<sub>1</sub> Free-Energy Surface" because the mass is being held constant. Second, we will hold constant the parameter pair, <math>~(K,P_e)</math>, and examine the resulting "P<sub>1</sub> Free-Energy Surface," <math>~\mathfrak{G}_{K,P_e}(R,M)</math>. | ||
==The M<sub>1</sub> Free-Energy Surface== | ==The M<sub>1</sub> Free-Energy Surface== | ||
Line 191: | Line 197: | ||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math>~\biggl[ \frac{K^{4n}}{G^{3(n+1)} M_\mathrm{tot}^{2(n+1)}} \biggr]^{1/(n-3)} \, | <math>~\biggl[ \frac{K^{4n}}{G^{3(n+1)} M_\mathrm{tot}^{2(n+1)}} \biggr]^{1/(n-3)} \, ,</math> | ||
</td> | </td> | ||
</tr> | </tr> | ||
Line 198: | Line 204: | ||
</div> | </div> | ||
which, as is detailed in an [[User:Tohline/SphericallySymmetricConfigurations/Virial#Choices_Made_by_Other_Researchers|accompanying discussion]], are similar | which, as is detailed in an [[User:Tohline/SphericallySymmetricConfigurations/Virial#Choices_Made_by_Other_Researchers|accompanying discussion]], are similar but not identical to the normalizations used by [http://adsabs.harvard.edu/abs/1970MNRAS.151...81H Horedt (1970)] and by [http://adsabs.harvard.edu/abs/1981MNRAS.195..967W Whitworth (1981)]. The self-consistent energy normalization is, | ||
<div align="center"> | <div align="center"> | ||
Line 237: | Line 243: | ||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math>\frac{1}{5} \cdot \frac{\tilde{f}_W}{\tilde{f}_M^2} \, ,</math> | <math>\frac{1}{5} \cdot \frac{\tilde{\mathfrak{f}}_W}{\tilde{\mathfrak{f}}_M^2} \, ,</math> | ||
</td> | </td> | ||
</tr> | </tr> | ||
Line 250: | Line 256: | ||
<td align="left"> | <td align="left"> | ||
<math>~ | <math>~ | ||
\biggl(\frac{4\pi}{3} \biggr)^{-1/n} | \biggl(\frac{4\pi}{3} \biggr)^{-1/n} \frac{\tilde{\mathfrak{f}}_A}{\tilde{\mathfrak{f}}_M^{(n+1)/n}} \, . | ||
</math> | </math> | ||
</td> | </td> | ||
Line 257: | Line 263: | ||
</div> | </div> | ||
Given the polytropic index, <math>~n</math>, we expect to obtain a different M<sub>1</sub> free-energy surface for each choice of the dimensionless truncation radius, <math>~\tilde\xi</math>; this choice will imply corresponding values for <math>~\tilde\theta</math> and <math>~\tilde\theta^'</math> and, hence also, corresponding (constant) values of the coefficients, <math>~A</math> and <math>~B</math>. | |||
=See Also= | =See Also= |
Revision as of 21:45, 12 July 2016
Free-Energy of Truncated Polytropes
| Tiled Menu | Tables of Content | Banner Video | Tohline Home Page | |
In this case, the Gibbs-like free energy is given by the sum of three separate energies,
<math>~\mathfrak{G}</math> |
<math>~=</math> |
<math>~W_\mathrm{grav} + \mathfrak{S}_\mathrm{therm} + P_eV</math> |
|
<math>~=</math> |
<math>~- \biggl[\frac{3}{5}\cdot \frac{\tilde{\mathfrak{f}}_W}{\tilde{\mathfrak{f}}_M^2} \biggr] \frac{GM^2}{R} - \biggl[\biggl(\frac{3}{4\pi}\biggr)^{1/n} \frac{\tilde{\mathfrak{f}}_A}{\tilde{\mathfrak{\mathfrak{f}}}_M^{(n+1)/n}} \biggr] \frac{KM^{(n+1)/n}}{R^{3/n}} + \frac{4\pi}{3} \cdot P_e R^3 \, ,</math> |
where, as derived elsewhere,
Structural Form Factors for Pressure-Truncated Polytropes <math>~(n \ne 5)</math> |
|||||||||
---|---|---|---|---|---|---|---|---|---|
|
|||||||||
As we have shown separately, for the singular case of <math>~n = 5</math>,
where, <math>~\ell \equiv \tilde\xi/\sqrt{3} </math> |
In general, then, the warped free-energy surface drapes across a four-dimensional parameter "plane" such that,
<math>~\mathfrak{G}</math> |
<math>~=</math> |
<math>~\mathfrak{G}(R, K, M, P_e) \, .</math> |
In order to effectively visualize the structure of this free-energy surface, we will reduce the parameter space from four to two, in two separate ways: First, we will hold constant the parameter pair, <math>~(K,M)</math>; adopting Kimura's (1981b) nomenclature, we will refer to the resulting function, <math>~\mathfrak{G}_{K,M}(R,P_e)</math>, as an "M1 Free-Energy Surface" because the mass is being held constant. Second, we will hold constant the parameter pair, <math>~(K,P_e)</math>, and examine the resulting "P1 Free-Energy Surface," <math>~\mathfrak{G}_{K,P_e}(R,M)</math>.
The M1 Free-Energy Surface
It is useful to rewrite the free-energy function in terms of dimensionless parameters. Here we need to pick normalizations for energy, radius, and pressure that are expressed in terms of the gravitational constant, <math>~G</math>, and the two fixed parameters, <math>~K</math> and <math>~M</math>. We have chosen to use,
<math>~R_\mathrm{norm}</math> |
<math>~\equiv</math> |
<math>~\biggl[ \biggl( \frac{G}{K} \biggr)^n M_\mathrm{tot}^{n-1} \biggr]^{1/(n-3)} \, ,</math> |
<math>~P_\mathrm{norm}</math> |
<math>~\equiv</math> |
<math>~\biggl[ \frac{K^{4n}}{G^{3(n+1)} M_\mathrm{tot}^{2(n+1)}} \biggr]^{1/(n-3)} \, ,</math> |
which, as is detailed in an accompanying discussion, are similar but not identical to the normalizations used by Horedt (1970) and by Whitworth (1981). The self-consistent energy normalization is,
<math>~E_\mathrm{norm}</math> |
<math>~\equiv</math> |
<math>~P_\mathrm{norm} R^3_\mathrm{norm} \, .</math> |
As we have demonstrated elsewhere, after implementing these normalizations, the expression that describes the M1 Free-Energy surface is,
<math> \mathfrak{G}_{K,M}^* \equiv \frac{\mathfrak{G}_{K,M}}{E_\mathrm{norm}} = -3A\biggl(\frac{R}{R_\mathrm{norm}}\biggr)^{-1} -~ nB \biggl(\frac{R}{R_\mathrm{norm}}\biggr)^{-3/n} +~ \biggl( \frac{4\pi}{3} \biggr) \frac{P_e}{P_\mathrm{norm}} \biggl(\frac{R}{R_\mathrm{norm}}\biggr)^3 \, , </math>
where the constants,
<math>~A</math> |
<math>~\equiv</math> |
<math>\frac{1}{5} \cdot \frac{\tilde{\mathfrak{f}}_W}{\tilde{\mathfrak{f}}_M^2} \, ,</math> |
<math>~B</math> |
<math>~\equiv</math> |
<math>~ \biggl(\frac{4\pi}{3} \biggr)^{-1/n} \frac{\tilde{\mathfrak{f}}_A}{\tilde{\mathfrak{f}}_M^{(n+1)/n}} \, . </math> |
Given the polytropic index, <math>~n</math>, we expect to obtain a different M1 free-energy surface for each choice of the dimensionless truncation radius, <math>~\tilde\xi</math>; this choice will imply corresponding values for <math>~\tilde\theta</math> and <math>~\tilde\theta^'</math> and, hence also, corresponding (constant) values of the coefficients, <math>~A</math> and <math>~B</math>.
See Also
© 2014 - 2021 by Joel E. Tohline |