Difference between revisions of "User:Tohline/ThreeDimensionalConfigurations/EFE Energies"
Line 92: | Line 92: | ||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
<math>~ | <math>~\rightarrow</math> | ||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
Line 102: | Line 102: | ||
[ 1<sup>st</sup> expression — [[User:Tohline/Appendix/References#EFE|EFE]], <font color="#00CC00">§53, Eq. (239)</font> ]<br /> | [ 1<sup>st</sup> expression — [[User:Tohline/Appendix/References#EFE|EFE]], <font color="#00CC00">§53, Eq. (239)</font> ]<br /> | ||
[ 2<sup>nd</sup> expression — [http://adsabs.harvard.edu/abs/1995ApJ...446..472C Paper I], <font color="#00CC00">Eq. (2.7)</font> ]<br /> | [ 2<sup>nd</sup> expression — [http://adsabs.harvard.edu/abs/1995ApJ...446..472C Paper I], <font color="#00CC00">Eq. (2.7)</font> ]<br /> | ||
</div> | |||
where, | |||
<div align="center"> | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~I</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~A_1a^2 + A_2b^2 + A_3c^2 \, ;</math> | |||
</td> | |||
</tr> | |||
</table> | |||
[ 1<sup>st</sup> expression — [[User:Tohline/Appendix/References#EFE|EFE]], <font color="#00CC00">§53, Eq. (239)</font> ]<br /> | |||
[ 2<sup>nd</sup> expression — [http://adsabs.harvard.edu/abs/1995ApJ...446..472C Paper I], <font color="#00CC00">Eq. (2.8)</font> ]<br /> | |||
</div> | </div> | ||
Line 127: | Line 148: | ||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math>~ (a^2 + b^2 + 2abx)\Omega \, | <math>~ (a^2 + b^2 + 2abx)\Omega \, ;</math> | ||
</td> | </td> | ||
</tr> | </tr> | ||
Line 168: | Line 189: | ||
</div> | </div> | ||
Note that, based on the units chosen in [http://adsabs.harvard.edu/abs/1995ApJ...446..472C Paper I], <math>~M = 5</math>, and <math>~abc = 15/4</math>. | |||
=See Also= | =See Also= |
Revision as of 03:35, 15 June 2016
| Tiled Menu | Tables of Content | Banner Video | Tohline Home Page | |
Properties of Homogeneous Ellipsoids (2)
In addition to pulling from §53 of Chandrasekhar's EFE, here, we lean heavily on the papers by M. D. Weinberg & S. Tremaine (1983, ApJ, 271, 586) (hereafter, WT83) and by D. M. Christodoulou, D. Kazanas, I. Shlosman, & J. E. Tohline (1995, ApJ, 446, 472) (hereafter, Paper I).
Sequence-Defining Dimensionless Parameters
A Riemann sequence of S-type ellipsoids is defined by the value of the dimensionless parameter,
<math>~f</math> |
<math>~\equiv</math> |
<math>~\frac{\zeta}{\Omega} = </math> constant, |
[ EFE, §48, Eq. (31) ]
[ WT83, Eq. (5) ]
[ Paper I, Eq. (2.1) ]
where, <math>~\zeta</math> is the system's vorticity as measured in a frame rotating with angular velocity, <math>~\Omega</math>. Alternatively, we can use the dimensionless parameter,
<math>~x</math> |
<math>~\equiv</math> |
<math>~\biggl[\frac{ab}{a^2 + b^2} \biggr]f \, ,</math> |
or,
<math>~\Lambda</math> |
<math>~\equiv</math> |
<math>~-\biggl[\frac{ab}{a^2 + b^2} \biggr] \Omega f = -\Omega x \, .</math> |
[ WT83, Eq. (4) ]
Conserved Quantities
Algebraic expressions for the conserved energy, <math>~E</math>, angular momentum, <math>~L</math>, and circulation, <math>~C</math>, are, respectively,
<math>~E</math> |
<math>~=</math> |
<math>~\frac{1}{2}v^2 + \frac{1}{2}(a^2 + b^2)(\Lambda^2 + \Omega^2) - 2ab\Lambda\Omega - 2I </math> |
|
<math>~\rightarrow</math> |
<math>~\cancelto{0}{\frac{1}{2}v^2} + \frac{1}{2} [(a+bx)^2 + (b+ax)^2]\Omega^2 - 2I \, ,</math> |
[ 1st expression — EFE, §53, Eq. (239) ]
[ 2nd expression — Paper I, Eq. (2.7) ]
where,
<math>~I</math> |
<math>~=</math> |
<math>~A_1a^2 + A_2b^2 + A_3c^2 \, ;</math> |
[ 1st expression — EFE, §53, Eq. (239) ]
[ 2nd expression — Paper I, Eq. (2.8) ]
<math>~\frac{5L}{M}</math> |
<math>~=</math> |
<math>~(a^2 + b^2)\Omega - 2ab\Lambda</math> |
|
<math>~=</math> |
<math>~ (a^2 + b^2 + 2abx)\Omega \, ;</math> |
[ 1st expression — EFE, §53, Eq. (240) ]
[ 2nd expression — Paper I, Eq. (2.5) ]
<math>~\frac{5C}{M}</math> |
<math>~=</math> |
<math>~(a^2 + b^2)\Lambda - 2ab\Omega</math> |
|
<math>~=</math> |
<math>~- [2ab + (a^2 + b^2)x ]\Omega \, .</math> |
[ 1st expression — EFE, §53, Eq. (241) ]
[ 2nd expression — Paper I, Eq. (2.6) ]
Note that, based on the units chosen in Paper I, <math>~M = 5</math>, and <math>~abc = 15/4</math>.
See Also
© 2014 - 2021 by Joel E. Tohline |