Difference between revisions of "User:Tohline/Appendix/Ramblings/PPToriPt2"

From VistrailsWiki
Jump to navigation Jump to search
(Begin "Part 2" of Blaes85 analysis chapter)
 
(→‎Start From Scratch: Lay out basic Blaes85 expressions)
Line 10: Line 10:
==Start From Scratch==
==Start From Scratch==


===Basic Equations from Blaes85===
<div align="center">
<table border="0" cellpadding="5" align="center">
<tr>
  <td colspan="3">&nbsp;</td>
  <th align="right" width="25%">
Blaes85<p></p>
Eq. No.
  </th>
</tr>
<tr>
  <td align="right">
<math>~(\beta\eta)^2</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~x^2(1+xb) \, ;</math>
  </td>
  <td align="right" width="25%">
(2.6)
  </td>
</tr>
<tr>
  <td align="right">
<math>~b</math>
  </td>
  <td align="center">
<math>~\equiv</math>
  </td>
  <td align="left">
<math>~3\cos\theta - \cos^3\theta \, ;</math>
  </td>
  <td align="right" width="25%">
(2.6)
  </td>
</tr>
<tr>
  <td align="right">
<math>~f</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~1-\eta^2 \, .</math>
  </td>
  <td align="right" width="25%">
(2.5)
  </td>
</tr>
</table>
</div>
<div align="center">
<table border="0" cellpadding="5" align="center">
<tr>
  <td colspan="3">&nbsp;</td>
  <th align="right" width="10%">
Blaes85<p></p>
Eq. No.
  </th>
</tr>
<tr>
  <td align="right">
<math>~LHS \equiv \hat{L}W</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>
~fx^2 \cdot \frac{\partial^2 W}{\partial x^2} + f \cdot \frac{\partial^2 W}{\partial \theta^2}
+ \biggl[ \frac{fx(1-2x\cos\theta)}{(1-x\cos\theta)} + nx^2\cdot \frac{\partial f}{\partial x}\biggr]\frac{\partial W}{\partial x}
</math>
  </td>
  <td align="right">
&nbsp;
  </td>
</tr>
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
&nbsp;
  </td>
  <td align="left">
<math>
+ \biggl[ \frac{fx\sin\theta}{(1-x\cos\theta)} + n\cdot \frac{\partial f}{\partial \theta}\biggr]\frac{\partial W}{\partial \theta}
+ \biggl[ \frac{2nx^2m^2}{\beta^2(1-x\cos\theta)^4} - \frac{m^2 x^2 f}{(1-x\cos\theta)^2} \biggr]W
</math>
  </td>
  <td align="right">
(4.2)
  </td>
</tr>
<tr>
  <td align="right">
<math>~RHS</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>
~-\frac{2nm^2}{\beta^2} \cdot (\beta\eta)^2 \biggl[ M \biggl(\frac{\nu}{m}\biggr)^2 + \frac{N}{m} \biggl(\frac{\nu}{m}\biggr)\biggr] W
</math>
  </td>
  <td align="right">
(4.1)
  </td>
</tr>
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>
~-\frac{2nm^2}{\beta^2} \biggl[ x^2 \biggl(\frac{\nu}{m}\biggr)^2 + \frac{2x^2}{(1-x\cos\theta)^2} \biggl(\frac{\nu}{m}\biggr)\biggr] W
</math>
  </td>
  <td align="right">
(4.2)
  </td>
</tr>
<tr>
  <td align="right">
<math>~\frac{W}{A_{00}}</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>
~1 + \beta^2 m^2 \biggl\{
2\eta^2\cos^2\theta - \frac{3\eta^2}{4(n+1)} - \frac{(4n+1)}{4(n+1)^2} ~\pm~i~\biggl[  \frac{2^3\cdot 3}{(n+1)}\biggr]^{1/2} \eta\cos\theta
\biggr\}
</math>
  </td>
  <td align="right">
(4.13)
  </td>
</tr>
<tr>
  <td align="right">
<math>~\frac{\nu}{m}</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>
~-1 ~\pm ~ i~\biggl[ \frac{3}{2(n+1)} \biggr]^{1/2} \beta
</math>
  </td>
  <td align="right">
(4.14)
  </td>
</tr>
</table>
</div>
===Our Manipulation of These Equations===
<div align="center">
<table border="0" cellpadding="5" align="center">
<tr>
  <td align="right">
<math>~\frac{LHS}{A_{00}}</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>
~fx^2 \cdot \frac{\partial^2 W}{\partial x^2} + f \cdot \frac{\partial^2 W}{\partial \theta^2}
+ \biggl[ \frac{fx(1-2x\cos\theta)}{(1-x\cos\theta)} + nx^2\cdot \frac{\partial f}{\partial x}\biggr]\frac{\partial W}{\partial x}
</math>
  </td>
</tr>
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
&nbsp;
  </td>
  <td align="left">
<math>
+ \biggl[ \frac{fx\sin\theta}{(1-x\cos\theta)} + n\cdot \frac{\partial f}{\partial \theta}\biggr]\frac{\partial W}{\partial \theta}
+ \biggl[ \frac{2nx^2m^2}{\beta^2(1-x\cos\theta)^4} - \frac{m^2 x^2 f}{(1-x\cos\theta)^2} \biggr]W
</math>
  </td>
</tr>
</table>
</div>


=See Also=
=See Also=

Revision as of 01:15, 22 April 2016

Stability Analyses of PP Tori (Part 2)

Whitworth's (1981) Isothermal Free-Energy Surface
|   Tiled Menu   |   Tables of Content   |  Banner Video   |  Tohline Home Page   |

This is a direct extension of our Part 1 discussion. Here we continue our effort to check the validity of the Blaes85 eigenvector. The relevant reference is:

Start From Scratch

Basic Equations from Blaes85

  Blaes85

Eq. No.

<math>~(\beta\eta)^2</math>

<math>~=</math>

<math>~x^2(1+xb) \, ;</math>

(2.6)

<math>~b</math>

<math>~\equiv</math>

<math>~3\cos\theta - \cos^3\theta \, ;</math>

(2.6)

<math>~f</math>

<math>~=</math>

<math>~1-\eta^2 \, .</math>

(2.5)

  Blaes85

Eq. No.

<math>~LHS \equiv \hat{L}W</math>

<math>~=</math>

<math> ~fx^2 \cdot \frac{\partial^2 W}{\partial x^2} + f \cdot \frac{\partial^2 W}{\partial \theta^2} + \biggl[ \frac{fx(1-2x\cos\theta)}{(1-x\cos\theta)} + nx^2\cdot \frac{\partial f}{\partial x}\biggr]\frac{\partial W}{\partial x} </math>

 

 

 

<math> + \biggl[ \frac{fx\sin\theta}{(1-x\cos\theta)} + n\cdot \frac{\partial f}{\partial \theta}\biggr]\frac{\partial W}{\partial \theta} + \biggl[ \frac{2nx^2m^2}{\beta^2(1-x\cos\theta)^4} - \frac{m^2 x^2 f}{(1-x\cos\theta)^2} \biggr]W </math>

(4.2)

<math>~RHS</math>

<math>~=</math>

<math> ~-\frac{2nm^2}{\beta^2} \cdot (\beta\eta)^2 \biggl[ M \biggl(\frac{\nu}{m}\biggr)^2 + \frac{N}{m} \biggl(\frac{\nu}{m}\biggr)\biggr] W </math>

(4.1)

 

<math>~=</math>

<math> ~-\frac{2nm^2}{\beta^2} \biggl[ x^2 \biggl(\frac{\nu}{m}\biggr)^2 + \frac{2x^2}{(1-x\cos\theta)^2} \biggl(\frac{\nu}{m}\biggr)\biggr] W </math>

(4.2)

<math>~\frac{W}{A_{00}}</math>

<math>~=</math>

<math> ~1 + \beta^2 m^2 \biggl\{ 2\eta^2\cos^2\theta - \frac{3\eta^2}{4(n+1)} - \frac{(4n+1)}{4(n+1)^2} ~\pm~i~\biggl[ \frac{2^3\cdot 3}{(n+1)}\biggr]^{1/2} \eta\cos\theta \biggr\} </math>

(4.13)

<math>~\frac{\nu}{m}</math>

<math>~=</math>

<math> ~-1 ~\pm ~ i~\biggl[ \frac{3}{2(n+1)} \biggr]^{1/2} \beta </math>

(4.14)

Our Manipulation of These Equations

<math>~\frac{LHS}{A_{00}}</math>

<math>~=</math>

<math> ~fx^2 \cdot \frac{\partial^2 W}{\partial x^2} + f \cdot \frac{\partial^2 W}{\partial \theta^2} + \biggl[ \frac{fx(1-2x\cos\theta)}{(1-x\cos\theta)} + nx^2\cdot \frac{\partial f}{\partial x}\biggr]\frac{\partial W}{\partial x} </math>

 

 

<math> + \biggl[ \frac{fx\sin\theta}{(1-x\cos\theta)} + n\cdot \frac{\partial f}{\partial \theta}\biggr]\frac{\partial W}{\partial \theta} + \biggl[ \frac{2nx^2m^2}{\beta^2(1-x\cos\theta)^4} - \frac{m^2 x^2 f}{(1-x\cos\theta)^2} \biggr]W </math>

See Also


Whitworth's (1981) Isothermal Free-Energy Surface

© 2014 - 2021 by Joel E. Tohline
|   H_Book Home   |   YouTube   |
Appendices: | Equations | Variables | References | Ramblings | Images | myphys.lsu | ADS |
Recommended citation:   Tohline, Joel E. (2021), The Structure, Stability, & Dynamics of Self-Gravitating Fluids, a (MediaWiki-based) Vistrails.org publication, https://www.vistrails.org/index.php/User:Tohline/citation