Difference between revisions of "User:Tohline/Apps/PapaloizouPringle84"
(Finished deriving PP84's linearized equations (3.8) - (3.12)) |
(→Nonaxisymmetric Instability in Papaloizou-Pringle Tori: Begin deriving velocity-component expressions) |
||
Line 128: | Line 128: | ||
Next, taking derivatives of <math>~f_\sigma</math>, where indicated, then dividing every equation through by <math>~f_\sigma</math> gives, | Next, taking derivatives of <math>~f_\sigma</math>, where indicated, then dividing every equation through by <math>~f_\sigma</math> gives, | ||
<div align="center"> | <div align="center"> | ||
<table border="0" cellpadding="8" align="center"> | <table border="0" cellpadding="8" align="center"> | ||
Line 140: | Line 141: | ||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math>~ \frac{\gamma \rho^' }{\rho_0} </math> | <math>~ \frac{\gamma \rho^' }{\rho_0} \, ;</math> | ||
</td> | </td> | ||
</tr> | </tr> | ||
Line 156: | Line 157: | ||
<td align="left"> | <td align="left"> | ||
<math>~ | <math>~ | ||
- \frac{\partial}{\partial\varpi}\biggl( \frac{P^'}{\rho_0} \biggr) | - \frac{\partial}{\partial\varpi}\biggl( \frac{P^'}{\rho_0} \biggr) \, ; | ||
</math> | </math> | ||
</td> | </td> | ||
Line 172: | Line 173: | ||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math>~- \frac{ im}{\varpi} \biggl(\frac{P^'}{\rho_0}\biggr) | <math>~- \frac{ im}{\varpi} \biggl(\frac{P^'}{\rho_0}\biggr) \, ; | ||
</math> | </math> | ||
</td> | </td> | ||
Line 189: | Line 190: | ||
<td align="left"> | <td align="left"> | ||
<math>~ | <math>~ | ||
- \frac{\partial}{\partial z}\biggl( \frac{P^'}{\rho_0} \biggr) | - \frac{\partial}{\partial z}\biggl( \frac{P^'}{\rho_0} \biggr) \, ; | ||
</math> | </math> | ||
</td> | </td> | ||
Line 218: | Line 219: | ||
==Formulation of Eigenvalue Problem== | ==Formulation of Eigenvalue Problem== | ||
Again following the lead of [http://adsabs.harvard.edu/abs/1984MNRAS.208..721P PP84], we let <math>~W^'</math> represent the (normalized) perturbation in the fluid entropy, specifically, | |||
<div align="center"> | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~W^'</math> | |||
</td> | |||
<td align="center"> | |||
<math>~\equiv</math> | |||
</td> | |||
<td align="left"> | |||
<math>~\frac{P^'}{\rho_0(\sigma + m{\dot\varphi}_0)} \, ,</math> | |||
</td> | |||
</tr> | |||
</table> | |||
</div> | |||
in which case the three linearized components of the Euler equation may be rewritten as, | |||
<div align="center"> | |||
<table border="0" cellpadding="8" align="center"> | |||
<tr><td align="center" colspan="3"><font color="#770000">''' ''Linearized'' <math>\varpi</math> Component of Euler Equation'''</font></td></tr> | |||
<tr> | |||
<td align="right"> | |||
<math>~{\dot\varpi}^' | |||
</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~i \biggl[\frac{\partial W^'}{\partial \varpi} | |||
- \frac{2 {\dot\varphi}_0 (\varpi {\dot\varphi}^' )}{(\sigma + m{\dot\varphi}_0)} \biggr] \, ; | |||
</math> | |||
</td> | |||
</tr> | |||
<tr><td align="center" colspan="3"><font color="#770000">''' ''Linearized'' <math>\varphi</math> Component of Euler Equation'''</font></td></tr> | |||
<tr> | |||
<td align="right"> | |||
<math>~(\varpi {\dot\varphi}^') | |||
</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~- \frac{ mW^'}{\varpi} + i~ \frac{{\dot\varpi}^'}{\varpi(\sigma + m{\dot\varphi}_0)}\biggl[ \frac{\partial (\varpi^2\dot\varphi_0)}{\partial\varpi} \biggr] \, ; | |||
</math> | |||
</td> | |||
</tr> | |||
<tr><td align="center" colspan="3"><font color="#770000">''' ''Linearized'' <math>~z</math> Component of Euler Equation'''</font></td></tr> | |||
<tr> | |||
<td align="right"> | |||
<math>~ | |||
~{\dot{z}}^' | |||
</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
i~\frac{\partial W^'}{\partial z} \, . | |||
</math> | |||
</td> | |||
</tr> | |||
</table> | |||
</div> | |||
Using the first of these three relations to provide an expression for <math>~{\dot\varpi}^'</math> in terms of <math>~W^'</math> and <math>~{\dot\varphi}^'</math>, and plugging this expression into the second relation allows us to solve for the azimuthal component of the perturbed velocity in terms of <math>~W^'</math> and its radial derivative. Specifically, we obtain, | |||
<div align="center"> | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~(\varpi {\dot\varphi}^') </math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~- \frac{ mW^'}{\varpi} - \frac{1}{\varpi(\sigma + m{\dot\varphi}_0)}\biggl[ \frac{\partial (\varpi^2\dot\varphi_0)}{\partial\varpi} \biggr] | |||
\biggl[\frac{\partial W^'}{\partial \varpi} - \frac{2 {\dot\varphi}_0 (\varpi {\dot\varphi}^' )}{(\sigma + m{\dot\varphi}_0)} \biggr] | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~- \frac{ mW^'}{\varpi} | |||
- \frac{\kappa^2}{2{\dot\varphi}_0 {\bar\sigma}} | |||
\biggl[\frac{\partial W^'}{\partial \varpi} \biggr] | |||
+ \biggl[\frac{\kappa^2 (\varpi {\dot\varphi}^' )}{{\bar\sigma}^2} \biggr] | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
<math>~\Rightarrow ~~~~(\varpi {\dot\varphi}^') (\kappa^2 - {\bar\sigma}^2 ) </math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~\frac{ m{\bar\sigma}^2W^'}{\varpi} | |||
+ \frac{\kappa^2{\bar\sigma}}{2{\dot\varphi}_0 } | |||
\biggl[\frac{\partial W^'}{\partial \varpi} \biggr] | |||
</math> | |||
</td> | |||
</tr> | |||
</table> | |||
</div> | |||
where, adopting notation from PP84, | |||
<div align="center"> | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~\kappa^2 \equiv \frac{2{\dot\varphi}_0}{\varpi} \biggl[ \frac{\partial (\varpi^2\dot\varphi_0)}{\partial\varpi} \biggr]</math> | |||
</td> | |||
<td align="center"> | |||
and | |||
</td> | |||
<td align="left"> | |||
<math>~{\bar\sigma} \equiv (\sigma + m{\dot\varphi}_0) \, .</math> | |||
</td> | |||
</tr> | |||
</table> | |||
</div> | |||
From our more detailed, [[User:Tohline/Cylindrical_3D#Eulerian_Formulation|accompanying discussion]] we pull the Eulerian representation of the set of principal governing equations written in cylindrical coordinates. | |||
=See Also= | =See Also= |
Revision as of 23:47, 12 March 2016
Nonaxisymmetric Instability in Papaloizou-Pringle Tori
| Tiled Menu | Tables of Content | Banner Video | Tohline Home Page | |
Linearized Principal Governing Equations in Cylindrical Coordinates
We begin by drawing from an accompanying derivation the relevant set of linearized principal governing equations, written in cylindrical coordinates but, following the lead of Papaloizou & Pringle (1984, MNRAS, 208, 721-750; hereafter, PP84), express each perturbation in the form,
<math>~q^'~~\rightarrow~~ q^' (\varpi,z) f_\sigma</math> |
where, |
<math>~f_\sigma \equiv e^{i(m\varphi + \sigma t)} \, ,</math> |
and, set <math>~\Phi^' = 0</math> — hence, the Poisson equation becomes irrelevant — because the torus is assumed not to be self-gravitating and the background (point source) potential, <math>~\Phi_0</math>, is assumed to be unchanging.
Set of Linearized Principal Governing Equations in Cylindrical Coordinates |
||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|
Next, taking derivatives of <math>~f_\sigma</math>, where indicated, then dividing every equation through by <math>~f_\sigma</math> gives,
Linearized Adiabatic Form of the 1st Law of Thermodynamics | ||
<math>~\frac{P^' }{P_0}</math> |
<math>~=</math> |
<math>~ \frac{\gamma \rho^' }{\rho_0} \, ;</math> |
Linearized <math>\varpi</math> Component of Euler Equation | ||
<math>~{\dot\varpi}^'[i(\sigma + m{\dot\varphi}_0)] - 2 {\dot\varphi}_0 (\varpi {\dot\varphi}^' ) </math> |
<math>~=</math> |
<math>~ - \frac{\partial}{\partial\varpi}\biggl( \frac{P^'}{\rho_0} \biggr) \, ; </math> |
Linearized <math>\varphi</math> Component of Euler Equation | ||
<math>~(\varpi {\dot\varphi}^')[i(\sigma + m{\dot\varphi}_0)] + \frac{{\dot\varpi}^'}{\varpi}\biggl[ \frac{\partial (\varpi^2\dot\varphi_0)}{\partial\varpi} \biggr] </math> |
<math>~=</math> |
<math>~- \frac{ im}{\varpi} \biggl(\frac{P^'}{\rho_0}\biggr) \, ; </math> |
Linearized <math>~z</math> Component of Euler Equation | ||
<math>~ ~{\dot{z}}^'[i(\sigma + m{\dot\varphi}_0)] </math> |
<math>~=</math> |
<math>~ - \frac{\partial}{\partial z}\biggl( \frac{P^'}{\rho_0} \biggr) \, ; </math> |
Linearized Continuity Equation | ||
<math>~\rho^'[i(\sigma + m{\dot\varphi}_0)] + i m\rho_0 (\varpi {\dot\varphi}^' ) </math> |
<math>~=</math> |
<math>~ - \frac{1}{\varpi} \frac{\partial}{\partial\varpi} \biggl[ \rho_0 \varpi {\dot\varpi}^' \biggr] - \frac{\partial}{\partial z} \biggl[ \rho_0 {\dot{z}}^' \biggr] \, . </math> |
These five equations match, respectively, equations (3.8) - (3.12) of PP84.
Formulation of Eigenvalue Problem
Again following the lead of PP84, we let <math>~W^'</math> represent the (normalized) perturbation in the fluid entropy, specifically,
<math>~W^'</math> |
<math>~\equiv</math> |
<math>~\frac{P^'}{\rho_0(\sigma + m{\dot\varphi}_0)} \, ,</math> |
in which case the three linearized components of the Euler equation may be rewritten as,
Linearized <math>\varpi</math> Component of Euler Equation | ||
<math>~{\dot\varpi}^' </math> |
<math>~=</math> |
<math>~i \biggl[\frac{\partial W^'}{\partial \varpi} - \frac{2 {\dot\varphi}_0 (\varpi {\dot\varphi}^' )}{(\sigma + m{\dot\varphi}_0)} \biggr] \, ; </math> |
Linearized <math>\varphi</math> Component of Euler Equation | ||
<math>~(\varpi {\dot\varphi}^') </math> |
<math>~=</math> |
<math>~- \frac{ mW^'}{\varpi} + i~ \frac{{\dot\varpi}^'}{\varpi(\sigma + m{\dot\varphi}_0)}\biggl[ \frac{\partial (\varpi^2\dot\varphi_0)}{\partial\varpi} \biggr] \, ; </math> |
Linearized <math>~z</math> Component of Euler Equation | ||
<math>~ ~{\dot{z}}^' </math> |
<math>~=</math> |
<math>~ i~\frac{\partial W^'}{\partial z} \, . </math> |
Using the first of these three relations to provide an expression for <math>~{\dot\varpi}^'</math> in terms of <math>~W^'</math> and <math>~{\dot\varphi}^'</math>, and plugging this expression into the second relation allows us to solve for the azimuthal component of the perturbed velocity in terms of <math>~W^'</math> and its radial derivative. Specifically, we obtain,
<math>~(\varpi {\dot\varphi}^') </math> |
<math>~=</math> |
<math>~- \frac{ mW^'}{\varpi} - \frac{1}{\varpi(\sigma + m{\dot\varphi}_0)}\biggl[ \frac{\partial (\varpi^2\dot\varphi_0)}{\partial\varpi} \biggr] \biggl[\frac{\partial W^'}{\partial \varpi} - \frac{2 {\dot\varphi}_0 (\varpi {\dot\varphi}^' )}{(\sigma + m{\dot\varphi}_0)} \biggr] </math> |
|
<math>~=</math> |
<math>~- \frac{ mW^'}{\varpi} - \frac{\kappa^2}{2{\dot\varphi}_0 {\bar\sigma}} \biggl[\frac{\partial W^'}{\partial \varpi} \biggr] + \biggl[\frac{\kappa^2 (\varpi {\dot\varphi}^' )}{{\bar\sigma}^2} \biggr] </math> |
<math>~\Rightarrow ~~~~(\varpi {\dot\varphi}^') (\kappa^2 - {\bar\sigma}^2 ) </math> |
<math>~=</math> |
<math>~\frac{ m{\bar\sigma}^2W^'}{\varpi} + \frac{\kappa^2{\bar\sigma}}{2{\dot\varphi}_0 } \biggl[\frac{\partial W^'}{\partial \varpi} \biggr] </math> |
where, adopting notation from PP84,
<math>~\kappa^2 \equiv \frac{2{\dot\varphi}_0}{\varpi} \biggl[ \frac{\partial (\varpi^2\dot\varphi_0)}{\partial\varpi} \biggr]</math> |
and |
<math>~{\bar\sigma} \equiv (\sigma + m{\dot\varphi}_0) \, .</math> |
From our more detailed, accompanying discussion we pull the Eulerian representation of the set of principal governing equations written in cylindrical coordinates.
See Also
© 2014 - 2021 by Joel E. Tohline |