Difference between revisions of "Course: Big Data 2016"

From VistrailsWiki
Jump to navigation Jump to search
Line 12: Line 12:
** Kevin Ye
** Kevin Ye


* Lecture: Mondays, 4:55pm-7:35pm at 19 University Pl., room 102.
* Lecture: Mondays, 4:55pm-7:35pm at Silver 207


* Some classes will include a lab session, please  always ''bring your laptop''.
* Some classes will include a lab session, please  always ''bring your laptop''.

Revision as of 22:34, 4 February 2016

DS-GA 1004- Big Data: Tentative Schedule -- subject to change

  • TAs:
    • Yuan Feng
    • Kevin Ye
  • Lecture: Mondays, 4:55pm-7:35pm at Silver 207
  • Some classes will include a lab session, please always bring your laptop.

News

Week 1 - Jan 25: Course Overview

Week 2 - Feb 1: The evolution of Data Management and introduction to Big Data; Introduction to Databases and Relational Model

Week 3 - Feb 8: Introduction to Databases, Relational Model and SQL (cont.)

Week 4 - Feb 15: Holiday

Big Data Foundations and Infrastructure (3 weeks)

Week 5 - Feb 22: Introduction to Map Reduce

Week 6 - Feb 29: MapReduce Algorithm Design Patterns

Week 7 - March 7: Parallel Databases vs MapReduce; Storage Solutions; Introduction to SPARK

Week 8 -- March 14th: Spring Break

Transparency and Reproducibility (1 week)

Week 9 - March 21: Data Exploration and Reproducibility

Big Data Algorithms, Mining Techniques, and Visualization (6 weeks)

Week 10 - March 28th: Finding similar items

  • Homework Assignment
    • See quizzes on Gradiance -- Distance measures and document similarity.

Week 11 - April 4th: Association Rules


  • Suggested additional reading:
    • Fast algorithms for mining association rules, Agrawal and Srikant, VLDB 1994.
    • Data Mining Concepts and Techniques, Jiawei Han and Micheline Kamber, Morgan Kaufmann
    • Dynamic Itemset Counting and Implication Rules for Market Basket Data. Brin et al., SIGMOD 1997. http://www-db.stanford.edu/~sergey/dic.html
  • Homework Assignment
    • See quizes on Gradiance -- Distance measures and document similarity.

Week 12 - April 11th: Visualization and Spatio-Temporal Data -- Invited lecture by Dr. Harish Doraiswamy (NYU CDS)

Week 13 - April 18th: Data Cleaning - Invited lecture by Dr. Divesh Srivastava, AT&T Research

Week 14 - April 25th: Graph Analysis

  • Required Reading: Data-Intensive Text Processing with MapReduce. Chapters 5 -- Graph Algorithms

Week 15 - May 2: TBD

Week 16 - May 9: Final Exam

Week 17 - May 16: Project Presentations