Difference between revisions of "User:Tohline/Appendix/Ramblings/Azimuthal Distortions"

From VistrailsWiki
Jump to navigation Jump to search
(Initial layout of new chapter)
 
(Begin describing individual eigenvector properties)
Line 10: Line 10:
==Adopted Notation==
==Adopted Notation==


We will adopt the notation of [http://adsabs.harvard.edu/abs/2011Ap%26SS.334....1H K. Hadley & J. N. Imamura (2011a, ''Astrophysics and Space Science'', 334, 1)].  Specifically, drawing on their equation (6) but ignoring variations in the vertical coordinate, the mass density is given by the expression,
We will adopt the notation of [http://adsabs.harvard.edu/abs/1990ApJ...361..394T J. E. Tohline & I. Hachisu (1988, ApJ, 361, 394)].  Specifically, drawing on their equation (2) but ignoring variations in the vertical coordinate, the mass density is given by the expression,
<div align="center">
<div align="center">
<table border="0" cellpadding="5" align="center">
<table border="0" cellpadding="5" align="center">
Line 22: Line 22:
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>~\rho_0 + \delta\rho(\varpi,t)e^{im\phi} \, .</math>
<math>~\rho_0 \biggl[ 1 + f(\varpi)e^{-i(\omega t - m\phi)} \biggr] \, ,</math>
  </td>
</tr>
</table>
</div>
where it is understood that <math>~\rho_0</math>, which defines the structure of the initial axisymmetric equilibrium configuration, is generally a function of the cylindrical radial coordinate, <math>~\varpi</math>.
 
Using the subscript, <math>~m</math>, to identify the time-invariant coefficients and functions that characterize the intrinsic eigenvector of each azimuthal eigen-mode, and acknowledging that the associated eigenfrequency will in general be imaginary, that is,
<div align="center">
<table border="0" cellpadding="5" align="center">
 
<tr>
  <td align="right">
<math>~\omega_m</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~\omega_R + i\omega_I \, ,</math>
  </td>
</tr>
</table>
</div>
 
we expect each unstable mode to display the following behavior:
<div align="center">
<table border="0" cellpadding="5" align="center">
 
<tr>
  <td align="right">
<math>~\biggl[ \frac{\rho}{\rho_0} - 1 \biggr]</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~f_m(\varpi)e^{-i[\omega_R t + i \omega_I t - m\phi_m(\varpi)]}  </math>
  </td>
</tr>
 
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~\biggl\{ f_m(\varpi)e^{-im\phi_m(\varpi)}\biggr\} e^{-i\omega_R t } \cdot  e^{\omega_I t}  </math>
  </td>
</tr>
 
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~\biggl\{ f_m(\varpi)e^{-i[\omega_R t + m\phi_m(\varpi)]} \biggr\} e^{\omega_I t} \, .</math>
   </td>
   </td>
</tr>
</tr>
Line 32: Line 93:
=See Also=
=See Also=


 
* [http://adsabs.harvard.edu/abs/2011Ap%26SS.334....1H K. Hadley &amp; J. N. Imamura (2011a, ''Astrophysics and Space Science'', 334, 1)]


{{LSU_HBook_footer}}
{{LSU_HBook_footer}}

Revision as of 23:17, 3 January 2016

Analyzing Azimuthal Distortions

Whitworth's (1981) Isothermal Free-Energy Surface
|   Tiled Menu   |   Tables of Content   |  Banner Video   |  Tohline Home Page   |

A standard technique that is used throughout astrophysics to test the stability of self-gravitating fluids involves perturbing physical variables away from their initial (usually equilibrium) values then linearizing each of the principal governing equations before seeking solutions describing the time-dependent behavior of the variables that simultaneously satisfy all of the equations. When the effects of the fluid's self gravity are ignored and this analysis technique is applied to an initially homogeneous medium, the combined set of linearized governing equations generates a wave equation — whose general properties are well documented throughout the mathematics and physical sciences literature — that, specifically in our case, governs the propagation of sound waves. It is quite advantageous, therefore, to examine how the wave equation is derived in the context of an analysis of sound waves before applying the standard perturbation & linearization technique to inhomogeneous and self-gravitating fluids.

In what follows, we borrow heavily from Chapter VIII of Landau & Lifshitz (1975), as it provides an excellent introductory discussion of sound waves.

Adopted Notation

We will adopt the notation of J. E. Tohline & I. Hachisu (1988, ApJ, 361, 394). Specifically, drawing on their equation (2) but ignoring variations in the vertical coordinate, the mass density is given by the expression,

<math>~\rho</math>

<math>~=</math>

<math>~\rho_0 \biggl[ 1 + f(\varpi)e^{-i(\omega t - m\phi)} \biggr] \, ,</math>

where it is understood that <math>~\rho_0</math>, which defines the structure of the initial axisymmetric equilibrium configuration, is generally a function of the cylindrical radial coordinate, <math>~\varpi</math>.

Using the subscript, <math>~m</math>, to identify the time-invariant coefficients and functions that characterize the intrinsic eigenvector of each azimuthal eigen-mode, and acknowledging that the associated eigenfrequency will in general be imaginary, that is,

<math>~\omega_m</math>

<math>~=</math>

<math>~\omega_R + i\omega_I \, ,</math>

we expect each unstable mode to display the following behavior:

<math>~\biggl[ \frac{\rho}{\rho_0} - 1 \biggr]</math>

<math>~=</math>

<math>~f_m(\varpi)e^{-i[\omega_R t + i \omega_I t - m\phi_m(\varpi)]} </math>

 

<math>~=</math>

<math>~\biggl\{ f_m(\varpi)e^{-im\phi_m(\varpi)}\biggr\} e^{-i\omega_R t } \cdot e^{\omega_I t} </math>

 

<math>~=</math>

<math>~\biggl\{ f_m(\varpi)e^{-i[\omega_R t + m\phi_m(\varpi)]} \biggr\} e^{\omega_I t} \, .</math>


See Also

Whitworth's (1981) Isothermal Free-Energy Surface

© 2014 - 2021 by Joel E. Tohline
|   H_Book Home   |   YouTube   |
Appendices: | Equations | Variables | References | Ramblings | Images | myphys.lsu | ADS |
Recommended citation:   Tohline, Joel E. (2021), The Structure, Stability, & Dynamics of Self-Gravitating Fluids, a (MediaWiki-based) Vistrails.org publication, https://www.vistrails.org/index.php/User:Tohline/citation