Difference between revisions of "User:Tohline/SSC/Stability/MoreGeneralApproach"
(Begin new chapter) |
|||
Line 5: | Line 5: | ||
{{LSU_HBook_header}} | {{LSU_HBook_header}} | ||
The material presented in this chapter is an extension of the chapter titled, [[User:Tohline/SSC/Structure/Other_Analytic_Models|Other Analytic Models]] and could also be considered to be a subsection of the associated chapter titled, [[User:Tohline/SSC/Structure/Other_Analytic_Ramblings#Consider_Parabolic_Case|Other Analytic Ramblings]]. More specifically, in the following "Introduction," we repeat a manipulation of the LAWE that was originally developed in the subsection of that chapter titled, [[User:Tohline/SSC/Structure/Other_Analytic_Ramblings#Consider_Parabolic_Case|"Consider Parabolic Case"]]. | The material presented in this chapter is an extension of the chapter titled, [[User:Tohline/SSC/Structure/Other_Analytic_Models#Other_Analytically_Definable.2C_Spherical_Equilibrium_Models|Other Analytic Models]] and could also be considered to be a subsection of the associated chapter titled, [[User:Tohline/SSC/Structure/Other_Analytic_Ramblings#Consider_Parabolic_Case|Other Analytic Ramblings]]. More specifically, in the following "Introduction," we repeat a manipulation of the LAWE that was originally developed in the subsection of that chapter titled, [[User:Tohline/SSC/Structure/Other_Analytic_Ramblings#Consider_Parabolic_Case|"Consider Parabolic Case"]]. | ||
Revision as of 20:40, 22 August 2015
More General Approach to the Parabolic Eigenvalue Problem
| Tiled Menu | Tables of Content | Banner Video | Tohline Home Page | |
The material presented in this chapter is an extension of the chapter titled, Other Analytic Models and could also be considered to be a subsection of the associated chapter titled, Other Analytic Ramblings. More specifically, in the following "Introduction," we repeat a manipulation of the LAWE that was originally developed in the subsection of that chapter titled, "Consider Parabolic Case".
Material that appears after this point in our presentation is under development and therefore
may contain incorrect mathematical equations and/or physical misinterpretations.
| Go Home |
Introduction
In the case of a parabolic density distribution, the LAWE becomes,
<math>~\frac{2x^2(5-3x^2)}{(1-x^2)(2-x^2)} \biggl[\alpha - \sigma^2 \biggl(5-3x^2\biggr)^{-1} + \frac{x \mathcal{G}_\sigma^'}{\mathcal{G}_\sigma} \biggr]</math> |
<math>~=</math> |
<math>~ \biggl(\frac{x^2 \mathcal{G}_\sigma^{' '}}{\mathcal{G}_\sigma}\biggr) +4 \cdot \frac{x \mathcal{G}_\sigma^'}{\mathcal{G}_\sigma} </math> |
<math>~\Rightarrow ~~~~ \frac{2}{(1-x^2)(2-x^2)} \biggl[ \biggl( \alpha + \frac{x \mathcal{G}_\sigma^'}{\mathcal{G}_\sigma}\biggr)(5-3x^2) -\sigma^2 \biggr]</math> |
<math>~=</math> |
<math>~ \biggl(\frac{\mathcal{G}_\sigma^{' '}}{\mathcal{G}_\sigma}\biggr) +\frac{4}{x^2} \cdot \frac{x \mathcal{G}_\sigma^'}{\mathcal{G}_\sigma} </math> |
Let's try,
<math>~\mathcal{G}_\sigma</math> |
<math>~=</math> |
<math>~(a_0 + a_2x^2)^n \cdot (b_0 + b_2x^2)^m \, ,</math> |
which implies,
<math>~\mathcal{G}_\sigma^'</math> |
<math>~=</math> |
<math>~n(a_0 + a_2x^2)^{n-1}(2a_2x) \cdot (b_0 + b_2x^2)^m +m (a_0 + a_2x^2)^n \cdot (b_0 + b_2x^2)^{m-1}(2b_2x)</math> |
<math>~\Rightarrow ~~~~ \frac{x \mathcal{G}_\sigma^'}{\mathcal{G}_\sigma}</math> |
<math>~=</math> |
<math>~n(a_0 + a_2x^2)^{-1}(2a_2x^2) +m (b_0 + b_2x^2)^{-1}(2b_2x^2) </math> |
|
<math>~=</math> |
<math>~\frac{2x^2}{(a_0 + a_2x^2) (b_0 + b_2x^2)} \biggl[ n a_2 (b_0 + b_2x^2) +mb_2 (a_0 + a_2x^2) \biggr] </math> |
|
<math>~=</math> |
<math>~\frac{2x^2}{(a_0 + a_2x^2) (b_0 + b_2x^2)} \biggl[ (n a_2 b_0 + mb_2 a_0) +(na_2 b_2+ mb_2 a_2)x^2\biggr] \, ,</math> |
and,
<math>~\mathcal{G}_\sigma^{' '}</math> |
<math>~=</math> |
<math>~n m (a_0 + a_2x^2)^{n-1}(2a_2x) \cdot (b_0 + b_2x^2)^{m-1}(2b_2x) + n(a_0 + a_2x^2)^{n-1}(2a_2) \cdot (b_0 + b_2x^2)^m + n(n-1)(a_0 + a_2x^2)^{n-2}(2a_2x)^2 \cdot (b_0 + b_2x^2)^m </math> |
|
|
<math>~+m n(a_0 + a_2x^2)^{n-1}(2a_2x) \cdot (b_0 + b_2x^2)^{m-1}(2b_2x) +m (a_0 + a_2x^2)^n \cdot (b_0 + b_2x^2)^{m-1}(2b_2) +m(m-1) (a_0 + a_2x^2)^n \cdot (b_0 + b_2x^2)^{m-2}(2b_2x)^2</math> |
<math>~\Rightarrow ~~~~ \frac{\mathcal{G}_\sigma^{' '}}{\mathcal{G}_\sigma}</math> |
<math>~=</math> |
<math>~8n m a_2b_2 x^2 (a_0 + a_2x^2)^{-1}\cdot (b_0 + b_2x^2)^{-1} + n2a_2 (a_0 + a_2x^2)^{-1} + n(n-1)4a_2^2 x^2 (a_0 + a_2x^2)^{-2} +m2b_2 (b_0 + b_2x^2)^{-1} +m(m-1)4 b_2^2 x^2 (b_0 + b_2x^2)^{-2}</math> |
|
<math>~=</math> |
<math>~\frac{2n a_2(b_0 + b_2x^2) + 2m b_2 (a_0 + a_2x^2)}{ (a_0 + a_2x^2)(b_0 + b_2x^2)} + \biggl[ \frac{4n(n-1) a_2^2 }{ (a_0 + a_2x^2)^{2}} + \frac{8n m a_2b_2}{ (a_0 + a_2x^2)(b_0 + b_2x^2)}+ \frac{4m(m-1) b_2^2 }{(b_0 + b_2x^2)^{2}} \biggr]x^2 </math> |
So, we have for the LAWE:
LHS |
<math>~=</math> |
<math>~ \frac{2}{(1-x^2)(2-x^2)} \biggl[ \biggl( \alpha + \frac{x \mathcal{G}_\sigma^'}{\mathcal{G}_\sigma}\biggr)(5-3x^2) -\sigma^2 \biggr]</math> |
|
<math>~=</math> |
<math>~ \frac{2}{(1-x^2)(2-x^2)(a_0 + a_2x^2) (b_0 + b_2x^2)} \biggl\{ \biggl[ \alpha(a_0 + a_2x^2) (b_0 + b_2x^2) + 2x^2(n a_2 b_0 + mb_2 a_0) + 2x^4 (na_2 b_2+ mb_2 a_2) \biggr](5-3x^2) </math> |
|
|
<math>~ -\sigma^2 (a_0 + a_2x^2) (b_0 + b_2x^2) \biggr\} \, ;</math> |
RHS |
<math>~=</math> |
<math>~ \biggl(\frac{\mathcal{G}_\sigma^{' '}}{\mathcal{G}_\sigma}\biggr) +\frac{4}{x^2} \cdot \frac{x \mathcal{G}_\sigma^'}{\mathcal{G}_\sigma} </math> |
|
<math>~=</math> |
<math>~\frac{2n a_2(b_0 + b_2x^2) + 2m b_2 (a_0 + a_2x^2)}{ (a_0 + a_2x^2)(b_0 + b_2x^2)} + \biggl[ \frac{4n(n-1) a_2^2 }{ (a_0 + a_2x^2)^{2}} + \frac{8n m a_2b_2}{ (a_0 + a_2x^2)(b_0 + b_2x^2)}+ \frac{4m(m-1) b_2^2 }{(b_0 + b_2x^2)^{2}} \biggr]x^2 </math> |
|
|
<math>~ + \frac{8}{(a_0 + a_2x^2) (b_0 + b_2x^2)} \biggl[ (n a_2 b_0 + mb_2 a_0) +(na_2 b_2+ mb_2 a_2)x^2\biggr] </math> |
|
<math>~=</math> |
<math>~\frac{1}{(a_0 + a_2x^2)(b_0 + b_2x^2)} \biggl\{ 2n a_2(b_0 + b_2x^2) + 2m b_2 (a_0 + a_2x^2) + 8(n a_2 b_0 + mb_2 a_0) + 8(na_2 b_2+ mb_2 a_2)x^2 </math> |
|
|
<math>~ + \biggl[8n m a_2b_2+ \frac{4n(n-1) a_2^2(b_0 + b_2x^2) }{ (a_0 + a_2x^2)} + \frac{4m(m-1) b_2^2(a_0 + a_2x^2) }{(b_0 + b_2x^2)} \biggr]x^2 \biggr\} \, . </math> |
Putting these together gives,
<math>~ 0 </math> |
<math>~=</math> |
<math>~ \biggl[ \alpha(a_0 + a_2x^2) (b_0 + b_2x^2) + 2x^2(n a_2 b_0 + mb_2 a_0) + 2x^4 (na_2 b_2+ mb_2 a_2) \biggr](5-3x^2) -\sigma^2 (a_0 + a_2x^2) (b_0 + b_2x^2) </math> |
|
|
<math>~ - \biggl[ n a_2(b_0 + b_2x^2) + m b_2 (a_0 + a_2x^2) + 4(n a_2 b_0 + mb_2 a_0) + 4(na_2 b_2+ mb_2 a_2)x^2+ 4n m a_2b_2x^2 \biggr](1-x^2)(2-x^2) </math> |
|
|
<math>~ - \frac{(1-x^2)(2-x^2)}{ (a_0 + a_2x^2)(b_0 + b_2x^2)}\biggl[2n(n-1) a_2^2(b_0 + b_2x^2)^2 + 2m(m-1) b_2^2(a_0 + a_2x^2)^2 \biggr]x^2 \, . </math> |
© 2014 - 2021 by Joel E. Tohline |