Difference between revisions of "User:Tohline/SSC/Structure/Other Analytic Models"
(→Other Analytically Definable, Spherical Equilibrium Models: Begin to lay out Prasad's parabolic density distribution) |
|||
Line 38: | Line 38: | ||
</table> | </table> | ||
</div> | </div> | ||
in which case we can write, | in which case we have, | ||
<div align="center"> | |||
<math>M_\mathrm{tot} \equiv M_r(R) = \frac{\pi\rho_c R^3}{3} \, ,</math> | |||
</div> | |||
and we can write, | |||
<div align="center"> | <div align="center"> | ||
<table border="0" cellpadding="5" align="center"> | <table border="0" cellpadding="5" align="center"> | ||
Line 44: | Line 48: | ||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
<math>~g_0(r) \equiv \frac{G M_r | <math>~g_0(r) \equiv \frac{G M_r(r) }{r^2} </math> | ||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
Line 50: | Line 54: | ||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math>~\frac{4\pi G \rho_c | <math>~\frac{4\pi G \rho_c r}{3} \biggl[1 - \frac{3}{4} \biggl( \frac{r}{R} \biggr)\biggr] \, .</math> | ||
</td> | </td> | ||
</tr> | </tr> | ||
Line 67: | Line 71: | ||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math>~- \int_0^r g_0(r) dr</math> | <math>~- \int_0^r g_0(r) \rho(r) dr</math> | ||
</td> | </td> | ||
</tr> | </tr> | ||
Line 88: | Line 92: | ||
<div align="center"> | <div align="center"> | ||
<math>~P_c = \frac{5\pi}{36} G\rho_c^2 R^2 \, .</math> | <math>~P_c = \frac{5\pi}{36} G\rho_c^2 R^2 \, .</math> | ||
</div> | |||
As has been derived in [[User:Tohline/SSC/Perturbations#Eigen_Value_Problem|an accompanying discussion]], the second-order ODE that defines the relevant Eigenvalue problem is, | |||
<div align="center"> | |||
<math> | |||
\frac{d^2x}{d\chi_0^2} + \biggl[\frac{4}{\chi_0} - \biggl(\frac{\rho_0}{\rho_c}\biggr) \biggl(\frac{P_0}{P_c}\biggr)^{-1} \biggl(\frac{g_0}{g_\mathrm{SSC}}\biggr) \biggr] \frac{dx}{d\chi_0} + \biggl(\frac{\rho_0}{\rho_c}\biggr) \biggl(\frac{P_0}{P_c}\biggr)^{-1} \biggl(\frac{1}{\gamma_\mathrm{g}} \biggr)\biggl[\tau_\mathrm{SSC}^2 \omega^2 + (4 - 3\gamma_\mathrm{g})\biggl(\frac{g_0}{g_\mathrm{SSC}}\biggr) \frac{1}{\chi_0} \biggr] x = 0 . | |||
</math><br /> | |||
</div> | |||
where the dimensionless radius, | |||
<div align="center"> | |||
<math> | |||
\chi_0 \equiv \frac{r_0}{R} \, , | |||
</math><br /> | |||
</div> | |||
<div align="center"> | |||
<math> | |||
g_\mathrm{SSC} \equiv \frac{P_c}{R\rho_c}</math> and | |||
<math>\tau_\mathrm{SSC} \equiv \biggl( \frac{R^2\rho_c}{P_c}\biggr)^{1/2} \, . | |||
</math> | |||
</div> | |||
For Stein's configuration with a linear density distribution, | |||
<div align="center"> | |||
<math> | |||
g_\mathrm{SSC} = \frac{5\pi G\rho_c R}{36}</math> and | |||
<math>\tau_\mathrm{SSC} \equiv \biggl( \frac{36}{5\pi G \rho_c }\biggr)^{1/2} = \biggl( \frac{12}{5}\cdot \frac{R^3}{GM_\mathrm{tot} }\biggr)^{1/2} \, . | |||
</math> | |||
</div> | |||
and the governing adiabatic wave equation takes the form, | |||
<div align="center"> | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~0</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
\frac{d^2x}{d\chi_0^2} + \biggl\{ \frac{4}{\chi_0} - | |||
\biggl(1-\chi_0\biggr) \biggl[ 1-\frac{24}{5}\chi_0^2 + \frac{28}{5}\chi_0^3 - \frac{9}{5}\chi_0^4 \biggr]^{-1} | |||
\biggl[\frac{48}{5} \chi_0 \biggl(1-\frac{3}{4}\chi_0\biggr)\biggr] \biggr\} \frac{dx}{d\chi_0} | |||
+ \biggl(1-\chi_0\biggr) \biggl[ 1-\frac{24}{5}\chi_0^2 + \frac{28}{5}\chi_0^3 - \frac{9}{5}\chi_0^4 \biggr]^{-1} | |||
\biggl(\frac{1}{\gamma_\mathrm{g}} \biggr)\biggl\{ \tau_\mathrm{SSC}^2 \omega^2 + (4 - 3\gamma_\mathrm{g})\biggl[\frac{48}{5} \biggl(1-\frac{3}{4}\chi_0\biggr)\biggr] \biggr\} x | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~\biggl[ 1-\frac{24}{5}\chi_0^2 + \frac{28}{5}\chi_0^3 - \frac{9}{5}\chi_0^4 \biggr] | |||
\frac{d^2x}{d\chi_0^2} + \biggl\{ \frac{4}{\chi_0}\biggl[ 1-\frac{24}{5}\chi_0^2 + \frac{28}{5}\chi_0^3 - \frac{9}{5}\chi_0^4 \biggr] - | |||
\biggl(1-\chi_0\biggr) | |||
\biggl[\frac{48}{5} \chi_0 \biggl(1-\frac{3}{4}\chi_0\biggr)\biggr] \biggr\} \frac{dx}{d\chi_0} | |||
+ \frac{1}{\gamma_\mathrm{g}} \biggl(1-\chi_0\biggr) \biggl\{ \frac{12}{5} \biggl( \frac{\omega^2 R^3}{GM_\mathrm{tot}}\biggr) | |||
+ (4 - 3\gamma_\mathrm{g})\biggl[\frac{48}{5} \biggl(1-\frac{3}{4}\chi_0\biggr)\biggr] \biggr\} x | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~\biggl[ 5\chi_0^2-24\chi_0^4 + 28\chi_0^5 - 9\chi_0^6 \biggr] | |||
\frac{d^2x}{d\chi_0^2} + \chi_0\biggl\{ 4\biggl[ 5-24\chi_0^2 + 28\chi_0^3 - 9\chi_0^4 \biggr] - | |||
48\chi_0^2\biggl(1-\chi_0\biggr) | |||
\biggl[\biggl(1-\frac{3}{4}\chi_0\biggr)\biggr] \biggr\} \frac{dx}{d\chi_0} | |||
+ \frac{1}{\gamma_\mathrm{g}} \chi_0^2 \biggl(1-\chi_0\biggr) \biggl\{ 12\biggl( \frac{\omega^2 R^3}{GM_\mathrm{tot}}\biggr) | |||
+ (4 - 3\gamma_\mathrm{g})\biggl[48 \biggl(1-\frac{3}{4}\chi_0\biggr)\biggr] \biggr\} x | |||
</math> | |||
</td> | |||
</tr> | |||
</table> | |||
</div> | </div> | ||
Revision as of 03:15, 20 June 2015
Other Analytically Definable, Spherical Equilibrium Models
| Tiled Menu | Tables of Content | Banner Video | Tohline Home Page | |
Linear Density Distribution
In an article titled, "Stellar Evolution: A Survey with Analytic Models," R. F. Stein (1966, in Stellar Evolution, Proceedings of an International Conference held at the Goddard Space Flight Center, Greenbelt, MD, U.S.A., edited by R. F. Stein & A. G. W. Cameron, pp. 1-105) defines the "Linear Stellar Model" as a star whose density "varies linearly from the center to the surface," that is (see his equation 3.1),
<math>\rho(r) = \rho_c\biggl( 1 - \frac{r}{R} \biggr) \, ,</math>
where, <math>~\rho_c</math> is the central density and, <math>~R</math> is the radius of the star. Both the mass distribution and the pressure distribution can be obtained analytically from this specified density distribution. Specifically, following our general solution strategy for determining the equilibrium structure of spherically symmetric, self-gravitating configurations,
<math>~M_r(r)</math> |
<math>~=</math> |
<math>~\int_0^r 4\pi r^2 \rho(r) dr</math> |
|
<math>~=</math> |
<math>~\frac{4\pi\rho_c r^3}{3} \biggl[1 - \frac{3}{4} \biggl( \frac{r}{R} \biggr)\biggr] \, ,</math> |
in which case we have,
<math>M_\mathrm{tot} \equiv M_r(R) = \frac{\pi\rho_c R^3}{3} \, ,</math>
and we can write,
<math>~g_0(r) \equiv \frac{G M_r(r) }{r^2} </math> |
<math>~=</math> |
<math>~\frac{4\pi G \rho_c r}{3} \biggl[1 - \frac{3}{4} \biggl( \frac{r}{R} \biggr)\biggr] \, .</math> |
Hence, proceeding via what we have labeled as "Technique 1", and enforcing the surface boundary condition, <math>~P(R) = 0</math>, Stein (1966) determines that (see his equation 3.5),
<math>~P(r)</math> |
<math>~=</math> |
<math>~- \int_0^r g_0(r) \rho(r) dr</math> |
|
<math>~=</math> |
<math>~\frac{\pi G\rho_c^2 R^2}{36} \biggl[5 - 24 \biggl( \frac{r}{R} \biggr)^2 + 28 \biggl( \frac{r}{R} \biggr)^3 - 9 \biggl( \frac{r}{R} \biggr)^4 \biggr] \, ,</math> |
where, it can readily be deduced, as well, that the central pressure is,
<math>~P_c = \frac{5\pi}{36} G\rho_c^2 R^2 \, .</math>
As has been derived in an accompanying discussion, the second-order ODE that defines the relevant Eigenvalue problem is,
<math>
\frac{d^2x}{d\chi_0^2} + \biggl[\frac{4}{\chi_0} - \biggl(\frac{\rho_0}{\rho_c}\biggr) \biggl(\frac{P_0}{P_c}\biggr)^{-1} \biggl(\frac{g_0}{g_\mathrm{SSC}}\biggr) \biggr] \frac{dx}{d\chi_0} + \biggl(\frac{\rho_0}{\rho_c}\biggr) \biggl(\frac{P_0}{P_c}\biggr)^{-1} \biggl(\frac{1}{\gamma_\mathrm{g}} \biggr)\biggl[\tau_\mathrm{SSC}^2 \omega^2 + (4 - 3\gamma_\mathrm{g})\biggl(\frac{g_0}{g_\mathrm{SSC}}\biggr) \frac{1}{\chi_0} \biggr] x = 0 .
</math>
where the dimensionless radius,
<math>
\chi_0 \equiv \frac{r_0}{R} \, ,
</math>
<math> g_\mathrm{SSC} \equiv \frac{P_c}{R\rho_c}</math> and <math>\tau_\mathrm{SSC} \equiv \biggl( \frac{R^2\rho_c}{P_c}\biggr)^{1/2} \, . </math>
For Stein's configuration with a linear density distribution,
<math> g_\mathrm{SSC} = \frac{5\pi G\rho_c R}{36}</math> and <math>\tau_\mathrm{SSC} \equiv \biggl( \frac{36}{5\pi G \rho_c }\biggr)^{1/2} = \biggl( \frac{12}{5}\cdot \frac{R^3}{GM_\mathrm{tot} }\biggr)^{1/2} \, . </math>
and the governing adiabatic wave equation takes the form,
<math>~0</math> |
<math>~=</math> |
<math>~ \frac{d^2x}{d\chi_0^2} + \biggl\{ \frac{4}{\chi_0} - \biggl(1-\chi_0\biggr) \biggl[ 1-\frac{24}{5}\chi_0^2 + \frac{28}{5}\chi_0^3 - \frac{9}{5}\chi_0^4 \biggr]^{-1} \biggl[\frac{48}{5} \chi_0 \biggl(1-\frac{3}{4}\chi_0\biggr)\biggr] \biggr\} \frac{dx}{d\chi_0} + \biggl(1-\chi_0\biggr) \biggl[ 1-\frac{24}{5}\chi_0^2 + \frac{28}{5}\chi_0^3 - \frac{9}{5}\chi_0^4 \biggr]^{-1} \biggl(\frac{1}{\gamma_\mathrm{g}} \biggr)\biggl\{ \tau_\mathrm{SSC}^2 \omega^2 + (4 - 3\gamma_\mathrm{g})\biggl[\frac{48}{5} \biggl(1-\frac{3}{4}\chi_0\biggr)\biggr] \biggr\} x </math> |
|
<math>~=</math> |
<math>~\biggl[ 1-\frac{24}{5}\chi_0^2 + \frac{28}{5}\chi_0^3 - \frac{9}{5}\chi_0^4 \biggr] \frac{d^2x}{d\chi_0^2} + \biggl\{ \frac{4}{\chi_0}\biggl[ 1-\frac{24}{5}\chi_0^2 + \frac{28}{5}\chi_0^3 - \frac{9}{5}\chi_0^4 \biggr] - \biggl(1-\chi_0\biggr) \biggl[\frac{48}{5} \chi_0 \biggl(1-\frac{3}{4}\chi_0\biggr)\biggr] \biggr\} \frac{dx}{d\chi_0} + \frac{1}{\gamma_\mathrm{g}} \biggl(1-\chi_0\biggr) \biggl\{ \frac{12}{5} \biggl( \frac{\omega^2 R^3}{GM_\mathrm{tot}}\biggr) + (4 - 3\gamma_\mathrm{g})\biggl[\frac{48}{5} \biggl(1-\frac{3}{4}\chi_0\biggr)\biggr] \biggr\} x </math> |
|
<math>~=</math> |
<math>~\biggl[ 5\chi_0^2-24\chi_0^4 + 28\chi_0^5 - 9\chi_0^6 \biggr] \frac{d^2x}{d\chi_0^2} + \chi_0\biggl\{ 4\biggl[ 5-24\chi_0^2 + 28\chi_0^3 - 9\chi_0^4 \biggr] - 48\chi_0^2\biggl(1-\chi_0\biggr) \biggl[\biggl(1-\frac{3}{4}\chi_0\biggr)\biggr] \biggr\} \frac{dx}{d\chi_0} + \frac{1}{\gamma_\mathrm{g}} \chi_0^2 \biggl(1-\chi_0\biggr) \biggl\{ 12\biggl( \frac{\omega^2 R^3}{GM_\mathrm{tot}}\biggr) + (4 - 3\gamma_\mathrm{g})\biggl[48 \biggl(1-\frac{3}{4}\chi_0\biggr)\biggr] \biggr\} x </math> |
Parabolic Density Distribution
In an article titled, "Radial Oscillations of a Stellar Model," C. Prasad (1949, MNRAS, 109, 103) investigated the properties of an equilibrium configuration with a prescribed density distribution given by the expression,
<math>\rho(r) = \rho_c\biggl[ 1 - \biggl(\frac{r}{R} \biggr)^2 \biggr] \, ,</math>
where, <math>~\rho_c</math> is the central density and, <math>~R</math> is the radius of the star. Both the mass distribution and the pressure distribution can be obtained analytically from this specified density distribution. Specifically, following our general solution strategy for determining the equilibrium structure of spherically symmetric, self-gravitating configurations,
<math>~M_r(r)</math> |
<math>~=</math> |
<math>~\int_0^r 4\pi r^2 \rho(r) dr</math> |
|
<math>~=</math> |
<math>~\frac{4\pi\rho_c r^3}{3} \biggl[1 - \frac{3}{5} \biggl( \frac{r}{R} \biggr)^2 \biggr] \, ,</math> |
in which case we can write,
<math>~g_0(r) \equiv \frac{G M_r(r) \rho(r)}{r^2} </math> |
<math>~=</math> |
<math>~\frac{4\pi G \rho_c^2 r}{3} \biggl[ 1 - \biggl(\frac{r}{R} \biggr)^2\biggr] \biggl[1 - \frac{3}{5} \biggl( \frac{r}{R} \biggr)^2\biggr] </math> |
|
<math>~=</math> |
<math>~\frac{4\pi G \rho_c^2 r}{15} \biggl[ 5 - 8\biggl(\frac{r}{R} \biggr)^2 + 3\biggl( \frac{r}{R} \biggr)^4\biggr] \, .</math> |
Hence, proceeding via what we have labeled as "Technique 1", and enforcing the surface boundary condition, <math>~P(R) = 0</math>, Prasad (1949) determines that,
<math>~P(r)</math> |
<math>~=</math> |
<math>~- \int_0^r g_0(r) dr</math> |
|
<math>~=</math> |
<math>~\frac{2\pi G\rho_c^2 R^2}{15} \biggl[2 - 5 \biggl( \frac{r}{R} \biggr)^2 + 4 \biggl( \frac{r}{R} \biggr)^4 - \biggl( \frac{r}{R} \biggr)^6 \biggr] </math> |
|
<math>~=</math> |
<math>~\frac{4\pi G\rho_c^2 R^2}{15} \biggl[1-\biggl(\frac{r}{R}\biggr)^2\biggr]^2 \biggl[1-\frac{1}{2}\biggl(\frac{r}{R}\biggr)^2\biggr] \, ,</math> |
where, it can readily be deduced, as well, that the central pressure is,
<math>~P_c = \frac{4\pi}{15} G\rho_c^2 R^2 \, .</math>
© 2014 - 2021 by Joel E. Tohline |