Difference between revisions of "Course: Big Data 2015"

From VistrailsWiki
Jump to navigation Jump to search
 
(16 intermediate revisions by 3 users not shown)
Line 10: Line 10:
= News =
= News =


* 04/05/2015: New quizzes are available at http://www.newgradiance.com
* [[Big Data 2015: Final Project]]
* 2/26/2015: An Amazon AWS token was emailed to each student. Please create your Amazon AWS account. You can find instructions at: http://www.vistrails.org/index.php/AWS_Setup
* 2/26/2015: An Amazon AWS token was emailed to each student. Please create your Amazon AWS account. You can find instructions at: http://www.vistrails.org/index.php/AWS_Setup
* 2/26/2015: You should install the Cloudera VM on your laptop. We will need that for the lab on March 9th. Here are the instructions: [[Cloudera VM Setup]]
* 2/26/2015: You should install the Cloudera VM on your laptop. We will need that for the lab on March 9th. Here are the instructions: [[Cloudera VM Setup]]
Line 106: Line 108:
** Download the mta-analysis example: http://bigdata.poly.edu/~fchirigati/mda-class/mta-analysis.vt
** Download the mta-analysis example: http://bigdata.poly.edu/~fchirigati/mda-class/mta-analysis.vt
** Download the links for the input data: http://bigdata.poly.edu/~fchirigati/mda-class/mta-links.txt
** Download the links for the input data: http://bigdata.poly.edu/~fchirigati/mda-class/mta-links.txt
** http://bigdata.poly.edu/~fchirigati/mda-class/hands-on.pdf
** Questions? Email Fernando at fchirigati@nyu.edu


* Programming assignment 4: Exploring urban data (see NYU Classes)
* Programming assignment 4: Exploring urban data (see NYU Classes)
Line 119: Line 123:


* Homework Assignment
* Homework Assignment
** See quizes on [http://www.newgradiance.com Gradiance] -- Distance measures and document similarity.  
** See quizzes on [http://www.newgradiance.com Gradiance] -- Distance measures and document similarity.  


== Week 8 - April 6th: Association Rules  ==
== Week 8 - April 6th: Association Rules  ==


* Lecture notes:
* Lecture notes:
** http://vgc.poly.edu/~juliana/courses/MassiveDataAnalysis2014/Lectures/association-rules.pdf
** http://vgc.poly.edu/~juliana/courses/BigData2015/Lectures/association-rules.pdf


* Assignment on frequent items and association rule mining. ''Due on Dec 7th.''  Check http://www.newgradiance.com/services


* Reading: Chapter 6 [http://vgc.poly.edu/~juliana/courses/MassiveDataAnalysis2014/Textbooks/ullman-book-v1.1-mining-massive-data.pdf Mining of Massive Datasets]
* Reading: Chapter 6 [http://vgc.poly.edu/~juliana/courses/MassiveDataAnalysis2014/Textbooks/ullman-book-v1.1-mining-massive-data.pdf Mining of Massive Datasets]
Line 135: Line 138:
**Dynamic Itemset Counting and Implication Rules for Market Basket Data. Brin et al., SIGMOD 1997. http://www-db.stanford.edu/~sergey/dic.html
**Dynamic Itemset Counting and Implication Rules for Market Basket Data. Brin et al., SIGMOD 1997. http://www-db.stanford.edu/~sergey/dic.html


* Homework Assignment
** See quizes on [http://www.newgradiance.com Gradiance] -- Distance measures and document similarity.


== Week 9 - April 13th: Visualization and Spatio-Temporal Data -- Invited lecture by Dr. Huy Vo (NYU CUSP) ==
== Week 9 - April 13th: Visualization and Spatio-Temporal Data -- Invited lecture by Dr. Harish Doraiswamy (NYU CUSP) ==


* Lecture notes:
* Lecture notes:
** http://vgc.poly.edu/~juliana/courses/MassiveDataAnalysis2014/Lectures/vis_and_big_data_resized.pdf
** http://vgc.poly.edu/~juliana/courses/BigData2015/Lectures/SpatialQP.pdf


* Lab: Using Amazon AWS to analyze and visualize taxi data
** https://github.com/ViDA-NYU/aws_taxi


== Week 10: Parallel Databases ==
== Week 10 - April 20th: Parallel Databases ==


** http://vgc.poly.edu/~juliana/courses/MassiveDataAnalysis2014/Lectures/paralleldb-vs-hadoop-2014.pdf
* Lecture notes:
** http://vgc.poly.edu/~juliana/courses/BigData2015/Lectures/paralleldb-vs-hadoop-2015.pdf


* Required reading:
** Benchmark DBMS vs MapReduce (2009): http://database.cs.brown.edu/sigmod09/benchmarks-sigmod09.pdf
** Benchmark DBMS vs MapReduce (2009): http://database.cs.brown.edu/sigmod09/benchmarks-sigmod09.pdf
** MapReduce: A Flexible Data Processing Tool: http://cacm.acm.org/magazines/2010/1/55744-mapreduce-a-flexible-data-processing-tool/fulltext
** MapReduce: A Flexible Data Processing Tool: http://cacm.acm.org/magazines/2010/1/55744-mapreduce-a-flexible-data-processing-tool/fulltext


* Suggested reading:
** Hive - A Warehousing Solution Over a Map-Reduce Framework. http://dl.acm.org/citation.cfm?id=1687609
** Pig Latin: A Not-So-Foreign Language for Data Processing. http://dl.acm.org/citation.cfm?id=1376726
** BigTable: http://fcoffice.googlecode.com/svn/%E4%B9%A6%E7%B1%8D/bigtable-osdi06.pdf
** Spark: Cluster Computing with Working Sets. http://static.usenix.org/legacy/events/hotcloud10/tech/full_papers/Zaharia.pdf


== Week 11: Graph Analysis ==
== Week 11 - April 27th: Graph Analysis ==


* Lecture notes:
* Lecture notes:
** http://vgc.poly.edu/~juliana/courses/BigData2015/Lectures/graph-algos.pdf
** http://vgc.poly.edu/~juliana/courses/BigData2015/Lectures/graph-algos.pdf


== Week 12: TBD ==
* Required Reading: Data-Intensive Text Processing with MapReduce. Chapters 5 -- Graph Algorithms


== Week 13: Final Exam ==
== Week 12 - May 4: Final Exam ==


== Week 14: Project Presentations ==
== Week 13 - May 11: Project Presentations ==


== Week 15: Project Presentations ==
== Week 14 - May 18: Project Presentations ==

Latest revision as of 01:13, 29 April 2015

DS-GA 1004- Big Data: Tentative Schedule -- subject to change

  • Lecture: Mondays, 4:55pm-7:35pm at Silver, room 208.
  • Some classes will include a lab session, please "always bring your laptop.

News

Background (2 weeks)

Week 1 - Feb 2: Course Overview; The evolution of Data Management and introduction to Big Data

Week 2 - Feb 9: Introduction to Databases, Relational Model and SQL

  • Programming assignment: Using SQL for data analysis and cleaning (see NYU Classes)

Feb 16: Holiday

Big Data Foundations and Infrastructure (3 weeks)

Week 3 - Feb 23: Introduction to Map Reduce


Week 4 - March 2: Algorithm Design for MapReduce: Relational Operations

  • Lab: Hands-on Hadoop (local)
  • Required reading:
    • Data-Intensive Text Processing with MapReduce, Chapters 1 and 2
    • Mining of Massive Datasets (2nd Edition), Chapter 2.
  • Programming assignment: Map Reduce (check NYU Classes)

Week 5 - March 9: MapReduce Algorithm Design Patterns; Parallel Databases vs MapReduce


  • Programming assignment: check NYU Classes on March 10th

March 16th: Spring Break

Transparency and Reproducibility (1 week)

Week 6 - March 23: Data Exploration and Reproducibility

  • Programming assignment 4: Exploring urban data (see NYU Classes)

Big Data Algorithms, Mining Techniques, and Visualization (6 weeks)

Week 7 - March 30th: Finding similar items

  • Homework Assignment
    • See quizzes on Gradiance -- Distance measures and document similarity.

Week 8 - April 6th: Association Rules


  • Suggested additional reading:
    • Fast algorithms for mining association rules, Agrawal and Srikant, VLDB 1994.
    • Data Mining Concepts and Techniques, Jiawei Han and Micheline Kamber, Morgan Kaufmann
    • Dynamic Itemset Counting and Implication Rules for Market Basket Data. Brin et al., SIGMOD 1997. http://www-db.stanford.edu/~sergey/dic.html
  • Homework Assignment
    • See quizes on Gradiance -- Distance measures and document similarity.

Week 9 - April 13th: Visualization and Spatio-Temporal Data -- Invited lecture by Dr. Harish Doraiswamy (NYU CUSP)

Week 10 - April 20th: Parallel Databases

Week 11 - April 27th: Graph Analysis

  • Required Reading: Data-Intensive Text Processing with MapReduce. Chapters 5 -- Graph Algorithms

Week 12 - May 4: Final Exam

Week 13 - May 11: Project Presentations

Week 14 - May 18: Project Presentations