Difference between revisions of "User:Tohline/DarkMatter/UniformSphere"

From VistrailsWiki
Jump to navigation Jump to search
(Begin chapter documenting derivations from early 1980s)
 
 
(8 intermediate revisions by the same user not shown)
Line 4: Line 4:
{{LSU_HBook_header}}
{{LSU_HBook_header}}


==Tohline 1982==


===General Derivation from Notes Dated 29 November 1982===
If the force per unit mass exerted at the position, <math>~\vec{r}</math>, from a single point mass, <math>~m</math>, is given by,
<div align="center">
<table border="0" cellpadding="5" align="center">
<tr>
  <td align="right">
<math>~\vec{F}</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~- \biggl( \frac{G^'m}{r} \biggr) \frac{\vec{r}}{r} \, ,</math>
  </td>
</tr>
</table>
</div>
then the force per unit mass exerted at <math>~\vec{x}</math> by a continuous mass distribution, whose mass density is defined by the function <math>~\rho(\vec{x}^')</math>, is,
<div align="center">
<table border="0" cellpadding="5" align="center">
<tr>
  <td align="right">
<math>~\vec{F}(\vec{x})</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~- \int G^' \rho(\vec{x}^') \biggl[ \frac{\vec{x}^' - \vec{x}}{| \vec{x}^' - \vec{x} |^2} \biggr] d^3x^' \, .</math>
  </td>
</tr>
</table>
</div>
This central force can also be expressed in terms of the gradient of a scalar potential, <math>~\Phi(\vec{x})</math>, specifically,
<div align="center">
<table border="0" cellpadding="5" align="center">
<tr>
  <td align="right">
<math>~\vec{F}(\vec{x})</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~- \vec\nabla\Phi(\vec{x}) \, ,</math>
  </td>
</tr>
</table>
</div>
where,
<div align="center">
<table border="0" cellpadding="5" align="center">
<tr>
  <td align="right">
<math>~\Phi(\vec{x}) </math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~ \int G^' \rho(\vec{x}^') \ln | \vec{x}^' - \vec{x} |  d^3x^' \, .</math>
  </td>
</tr>
</table>
</div>
For a spherically symmetric mass distribution, <math>~\rho(r^')</math>, the magnitude of the force that is directed along the radial vector, <math>~\vec{r}^'</math>, and measured from the center of the mass distribution can be expressed as the following single integral over <math>~r^'</math>:
<div align="center">
<table border="0" cellpadding="5" align="center">
<tr>
  <td align="right">
<math>~F(r) \equiv \vec{F}\cdot \frac{\vec{r}}{r} </math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~ -2\pi G^' \int\limits_{R_1}^{R_2} \rho(r^') (r^')^2
\biggl[\frac{1}{r} + \frac{1}{2r^2 r^'} \biggl( r^2 - {r^'}^2 \biggr) \ln\biggl( \frac{r^' + r}{|r^' - r|} \biggr) \biggr]  dr^'
\, .</math>
  </td>
</tr>
</table>
</div>
This integral can be completed analytically if <math>~\rho(r^') = \rho_0</math>, that is, for a uniform-density mass distribution.  Independent of whether the limits of integration, <math>~R_1</math> and <math>~R_2</math>, are less than or greater than <math>~r</math>, the integral gives,
<div align="center">
<table border="0" cellpadding="5" align="center">
<tr>
  <td align="right">
<math>~F(r) </math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
- \frac{3G^'}{8r} \biggl( \frac{4\pi}{3}\rho_0 \biggr) \biggl\{ \biggl( R_2^3 - R_1^3 \biggr) + r^2 \biggl(R_2 - R_1\biggr)
</math>
  </td>
</tr>
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
&nbsp;
  </td>
  <td align="left">
<math>~ +
r^3 \biggl[ \frac{1}{2} + \frac{1}{2}\biggl( \frac{R_1}{r} \biggr)^4 - \biggl( \frac{R_1}{r} \biggr)^2\biggr]
\ln\biggl( \frac{R_1 + r}{|R_1 - r|} \biggr)
</math>
  </td>
</tr>
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
&nbsp;
  </td>
  <td align="left">
<math>~ - 
r^3 \biggl[ \frac{1}{2} + \frac{1}{2}\biggl( \frac{R_2}{r} \biggr)^4 - \biggl( \frac{R_2}{r} \biggr)^2\biggr]
\ln\biggl( \frac{R_2 + r}{|R_2 - r|} \biggr)
\biggr\} \, .</math>
  </td>
</tr>
</table>
</div>
If the position, <math>~r</math>, is located outside of a uniform-density sphere, then <math>~R_1 = 0</math> and <math>~R_2 < r</math>, so the aggregate acceleration becomes,
<div align="center">
<table border="0" cellpadding="5" align="center">
<tr>
  <td align="right">
<math>~F(r)_\mathrm{out} </math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
- \frac{3G^'}{8r} \biggl( \frac{4\pi}{3}\rho_0 \biggr) \biggl\{ R_2^3  + r^2 R_2 - 
r^3 \biggl[ \frac{1}{2} + \frac{1}{2}\biggl( \frac{R_2}{r} \biggr)^4 - \biggl( \frac{R_2}{r} \biggr)^2\biggr]
\ln\biggl( \frac{r+R_2}{r- R_2} \biggr)
\biggr\}
</math>
  </td>
</tr>
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
- \frac{G^' M(R_2)}{r} \biggl\{
1 - 3 \sum_{n=1}^{\infty} \biggl( \frac{R_2}{r} \biggr)^{2n} \biggl[(2n-1)(2n+1)(2n+3)  \biggr]^{-1}
\biggr\} \, ,
</math>
  </td>
</tr>
</table>
</div>
where, <math>~M(R_2) \equiv 4\pi \rho_0 R_2^3/3</math>.  If the position, <math>~r</math>, is located interior to a uniform-density ''shell'', then <math>~r < R_1 < R_2</math> and the aggregate acceleration is,
<div align="center">
<table border="0" cellpadding="5" align="center">
<tr>
  <td align="right">
<math>~F(r)_\mathrm{shell} </math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
- \frac{4\pi}{3} G^' \rho_0 R_2 r \biggl\{1 - \frac{R_1}{R_2}
- 3 \sum_{n=1}^{\infty} \biggl[ \biggl( \frac{r}{R_2} \biggr)^{2n} - \frac{R_1}{R_2} \biggl( \frac{r}{R_1} \biggr)^{2n}\biggr] \biggl[(2n-1)(2n+1)(2n+3) 
\biggr]^{-1} \biggr\} \, .
</math>
  </td>
</tr>
</table>
</div>
If <math>~r</math> is inside a uniform-density sphere, then <math>~R_1 = 0</math> and <math>~ r < R_2</math>, so the aggregate acceleration is,
<div align="center">
<table border="0" cellpadding="5" align="center">
<tr>
  <td align="right">
<math>~F(r)_\mathrm{in} </math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
- \frac{4\pi}{3} G^' \rho_0 R_2 r  \biggl\{
1 - 3 \sum_{n=1}^{\infty} \biggl( \frac{r}{R_2} \biggr)^{2n} \biggl[(2n-1)(2n+1)(2n+3)  \biggr]^{-1}
\biggr\} \, .
</math>
  </td>
</tr>
</table>
</div>
===Limiting Cases===
Some limiting cases are of interest for the uniform sphere, ''i.e.,'' when <math>~R_1 = 0</math>.  First, notice that (Gradshteyn &amp; Ryzhik 1965, formula 0.141-2),
<div align="center">
<table border="0" cellpadding="5" align="center">
<tr>
  <td align="right">
<math>~\sum_{n=1}^{\infty} \biggl[(2n-1)(2n+1)(2n+3)  \biggr]^{-1}</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~ \frac{1}{12} \, .</math>
  </td>
</tr>
</table>
</div>
<font color="maroon" face="Arial">'''Sitting on the Surface:'''</font>  Therefore, when <math>~r = R_2</math> &#8212; that is, ''on'' the surface of the uniform-density sphere,
<div align="center">
<table border="0" cellpadding="5" align="center">
<tr>
  <td align="right">
<math>~F</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~ - \frac{3 G^' M(R_2)}{4R_2} \, .</math>
  </td>
</tr>
</table>
</div>
So the force acts as though the mass is all concentrated at a point, ''not'' at the center of the sphere, but at a distance <math>~4/3</math> of the sphere's radius away.
<font color="maroon" face="Arial">'''Well Inside the Surface:'''</font>  When <math>~r \ll R_2</math>,
<div align="center">
<table border="0" cellpadding="5" align="center">
<tr>
  <td align="right">
<math>~F(r)_\mathrm{in}</math>
  </td>
  <td align="center">
<math>~\approx</math>
  </td>
  <td align="left">
<math>~ - \frac{G^' M(R_2)}{R_2}  \biggl( \frac{r}{R_2} \biggr) \, ,</math>
  </td>
</tr>
</table>
</div>
that is, the acceleration grows linearly with <math>~r</math>, as in any harmonic potential.
<font color="maroon" face="Arial">'''Well Outside the Sphere:'''</font>  When <math>~r \gg R_2</math>,
<div align="center">
<table border="0" cellpadding="5" align="center">
<tr>
  <td align="right">
<math>~F(r)_\mathrm{out}</math>
  </td>
  <td align="center">
<math>~\approx</math>
  </td>
  <td align="left">
<math>~ - \frac{G^' M(R_2)}{r}  \, ,</math>
  </td>
</tr>
</table>
</div>
which is in line with the adopted point-mass specification.


=See Also=
=See Also=


* [http://www.phys.lsu.edu/~tohline/vita/Tohline.C4.pdf Stabilizing a Cold Disk with a 1/r Force Law]
* [http://adsabs.harvard.edu/abs/1963MNRAS.127...21F Finzi (1963)] &#8212; ''On the Validity of Newton's Law at a Long Distance''
* [http://www.phys.lsu.edu/~tohline/TinsleyNotes1978.pdf Notes from Beatrice Tinsley dated July 3, 1978]
* [http://adsabs.harvard.edu/abs/1983IAUS..100..205T Stabilizing a Cold Disk with a 1/r Force Law]
* [http://www.phys.lsu.edu/~tohline/vita/Tohline.C5.pdf Does Gravity Exhibit a 1/r Force on the Scale of Galaxies?]
* [http://www.phys.lsu.edu/~tohline/vita/Tohline.C5.pdf Does Gravity Exhibit a 1/r Force on the Scale of Galaxies?]
* [http://adsabs.harvard.edu/abs/1987ApJ...313....1K Kuhn &amp; Kruglyak (1987)] &#8212; ''Non-Newtonian forces and the invisible mass problem''
* [http://arxiv.org/abs/1404.0531 Sanders (2014)] &#8212; ''A Historical Perspective on Modified Newtonian Dynamics''




{{LSU_HBook_footer}}
{{LSU_HBook_footer}}

Latest revision as of 16:25, 24 February 2018

Force Exerted by a Uniform-Density Shell or Sphere

Whitworth's (1981) Isothermal Free-Energy Surface
|   Tiled Menu   |   Tables of Content   |  Banner Video   |  Tohline Home Page   |

Tohline 1982

General Derivation from Notes Dated 29 November 1982

If the force per unit mass exerted at the position, <math>~\vec{r}</math>, from a single point mass, <math>~m</math>, is given by,

<math>~\vec{F}</math>

<math>~=</math>

<math>~- \biggl( \frac{G^'m}{r} \biggr) \frac{\vec{r}}{r} \, ,</math>

then the force per unit mass exerted at <math>~\vec{x}</math> by a continuous mass distribution, whose mass density is defined by the function <math>~\rho(\vec{x}^')</math>, is,

<math>~\vec{F}(\vec{x})</math>

<math>~=</math>

<math>~- \int G^' \rho(\vec{x}^') \biggl[ \frac{\vec{x}^' - \vec{x}}{| \vec{x}^' - \vec{x} |^2} \biggr] d^3x^' \, .</math>

This central force can also be expressed in terms of the gradient of a scalar potential, <math>~\Phi(\vec{x})</math>, specifically,

<math>~\vec{F}(\vec{x})</math>

<math>~=</math>

<math>~- \vec\nabla\Phi(\vec{x}) \, ,</math>

where,

<math>~\Phi(\vec{x}) </math>

<math>~=</math>

<math>~ \int G^' \rho(\vec{x}^') \ln | \vec{x}^' - \vec{x} | d^3x^' \, .</math>

For a spherically symmetric mass distribution, <math>~\rho(r^')</math>, the magnitude of the force that is directed along the radial vector, <math>~\vec{r}^'</math>, and measured from the center of the mass distribution can be expressed as the following single integral over <math>~r^'</math>:

<math>~F(r) \equiv \vec{F}\cdot \frac{\vec{r}}{r} </math>

<math>~=</math>

<math>~ -2\pi G^' \int\limits_{R_1}^{R_2} \rho(r^') (r^')^2 \biggl[\frac{1}{r} + \frac{1}{2r^2 r^'} \biggl( r^2 - {r^'}^2 \biggr) \ln\biggl( \frac{r^' + r}{|r^' - r|} \biggr) \biggr] dr^' \, .</math>

This integral can be completed analytically if <math>~\rho(r^') = \rho_0</math>, that is, for a uniform-density mass distribution. Independent of whether the limits of integration, <math>~R_1</math> and <math>~R_2</math>, are less than or greater than <math>~r</math>, the integral gives,

<math>~F(r) </math>

<math>~=</math>

<math>~ - \frac{3G^'}{8r} \biggl( \frac{4\pi}{3}\rho_0 \biggr) \biggl\{ \biggl( R_2^3 - R_1^3 \biggr) + r^2 \biggl(R_2 - R_1\biggr) </math>

 

 

<math>~ + r^3 \biggl[ \frac{1}{2} + \frac{1}{2}\biggl( \frac{R_1}{r} \biggr)^4 - \biggl( \frac{R_1}{r} \biggr)^2\biggr] \ln\biggl( \frac{R_1 + r}{|R_1 - r|} \biggr) </math>

 

 

<math>~ - r^3 \biggl[ \frac{1}{2} + \frac{1}{2}\biggl( \frac{R_2}{r} \biggr)^4 - \biggl( \frac{R_2}{r} \biggr)^2\biggr] \ln\biggl( \frac{R_2 + r}{|R_2 - r|} \biggr) \biggr\} \, .</math>

If the position, <math>~r</math>, is located outside of a uniform-density sphere, then <math>~R_1 = 0</math> and <math>~R_2 < r</math>, so the aggregate acceleration becomes,

<math>~F(r)_\mathrm{out} </math>

<math>~=</math>

<math>~ - \frac{3G^'}{8r} \biggl( \frac{4\pi}{3}\rho_0 \biggr) \biggl\{ R_2^3 + r^2 R_2 - r^3 \biggl[ \frac{1}{2} + \frac{1}{2}\biggl( \frac{R_2}{r} \biggr)^4 - \biggl( \frac{R_2}{r} \biggr)^2\biggr] \ln\biggl( \frac{r+R_2}{r- R_2} \biggr) \biggr\} </math>

 

<math>~=</math>

<math>~ - \frac{G^' M(R_2)}{r} \biggl\{ 1 - 3 \sum_{n=1}^{\infty} \biggl( \frac{R_2}{r} \biggr)^{2n} \biggl[(2n-1)(2n+1)(2n+3) \biggr]^{-1} \biggr\} \, , </math>

where, <math>~M(R_2) \equiv 4\pi \rho_0 R_2^3/3</math>. If the position, <math>~r</math>, is located interior to a uniform-density shell, then <math>~r < R_1 < R_2</math> and the aggregate acceleration is,

<math>~F(r)_\mathrm{shell} </math>

<math>~=</math>

<math>~ - \frac{4\pi}{3} G^' \rho_0 R_2 r \biggl\{1 - \frac{R_1}{R_2} - 3 \sum_{n=1}^{\infty} \biggl[ \biggl( \frac{r}{R_2} \biggr)^{2n} - \frac{R_1}{R_2} \biggl( \frac{r}{R_1} \biggr)^{2n}\biggr] \biggl[(2n-1)(2n+1)(2n+3) \biggr]^{-1} \biggr\} \, . </math>


If <math>~r</math> is inside a uniform-density sphere, then <math>~R_1 = 0</math> and <math>~ r < R_2</math>, so the aggregate acceleration is,

<math>~F(r)_\mathrm{in} </math>

<math>~=</math>

<math>~ - \frac{4\pi}{3} G^' \rho_0 R_2 r \biggl\{ 1 - 3 \sum_{n=1}^{\infty} \biggl( \frac{r}{R_2} \biggr)^{2n} \biggl[(2n-1)(2n+1)(2n+3) \biggr]^{-1} \biggr\} \, . </math>

Limiting Cases

Some limiting cases are of interest for the uniform sphere, i.e., when <math>~R_1 = 0</math>. First, notice that (Gradshteyn & Ryzhik 1965, formula 0.141-2),

<math>~\sum_{n=1}^{\infty} \biggl[(2n-1)(2n+1)(2n+3) \biggr]^{-1}</math>

<math>~=</math>

<math>~ \frac{1}{12} \, .</math>

Sitting on the Surface: Therefore, when <math>~r = R_2</math> — that is, on the surface of the uniform-density sphere,

<math>~F</math>

<math>~=</math>

<math>~ - \frac{3 G^' M(R_2)}{4R_2} \, .</math>

So the force acts as though the mass is all concentrated at a point, not at the center of the sphere, but at a distance <math>~4/3</math> of the sphere's radius away.

Well Inside the Surface: When <math>~r \ll R_2</math>,

<math>~F(r)_\mathrm{in}</math>

<math>~\approx</math>

<math>~ - \frac{G^' M(R_2)}{R_2} \biggl( \frac{r}{R_2} \biggr) \, ,</math>

that is, the acceleration grows linearly with <math>~r</math>, as in any harmonic potential.

Well Outside the Sphere: When <math>~r \gg R_2</math>,

<math>~F(r)_\mathrm{out}</math>

<math>~\approx</math>

<math>~ - \frac{G^' M(R_2)}{r} \, ,</math>

which is in line with the adopted point-mass specification.

See Also


Whitworth's (1981) Isothermal Free-Energy Surface

© 2014 - 2021 by Joel E. Tohline
|   H_Book Home   |   YouTube   |
Appendices: | Equations | Variables | References | Ramblings | Images | myphys.lsu | ADS |
Recommended citation:   Tohline, Joel E. (2021), The Structure, Stability, & Dynamics of Self-Gravitating Fluids, a (MediaWiki-based) Vistrails.org publication, https://www.vistrails.org/index.php/User:Tohline/citation