Difference between revisions of "Course: Massive Data Analysis 2014"

From VistrailsWiki
Jump to navigation Jump to search
 
(36 intermediate revisions by 2 users not shown)
Line 9: Line 9:
= News =
= News =


* Welcome!
* [[Massive Data Analysis 2014: Class project]]
* Aditi Nakta, our TA, will hold office hours on Tuesdays from 1 - 3 pm @ 2 MTC room 10.98D
* Your Gradiance assignment on MapReduce has been posted:  http://www.newgradiance.com/services. If you haven't registered yet, do so and use the class token 1AEF5F24. Make sure to use your official NYU email and id when you register.
* On Sept 22nd, I distributed AWS tokens that will be needed for your assignments. If you have not received your token, let me know.
* Your first assignment has been posted -- see details below and in NYU Classes.
* Instructions on how to set up your AWS account: http://www.vistrails.org/index.php/AWS_Setup
* You should get an NYU HPC account so that you can use the NYU Hadoop cluster. To submit a request for an account, follow the instructions in: https://wikis.nyu.edu/display/NYUHPC/HPC+at+NYU+-+Access. You can find instructions on how to login and use the NYU Hadoop cluster at: http://vgc.poly.edu/~juliana/courses/BigData2014/Lectures/MapReduceExample/readme-nyu-hadoop.txt


= Background (4 weeks) =
= Background (4 weeks) =
Line 48: Line 54:
** [http://philip.greenspun.com/sql/data-modeling.html SQL/Nerds Modeling (parts)]
** [http://philip.greenspun.com/sql/data-modeling.html SQL/Nerds Modeling (parts)]


* [[Assignment 1: Provenance and Data Exploration]]


== Week 4 -- Sept 29: Overview: Advanced SQL and Query Optimization  ==
== Week 4 -- Sept 29: Overview: Advanced SQL and Query Optimization  ==
Line 54: Line 61:
** http://vgc.poly.edu/~juliana/courses/MassiveDataAnalysis2014/Lectures/xml_schema_query.pdf
** http://vgc.poly.edu/~juliana/courses/MassiveDataAnalysis2014/Lectures/xml_schema_query.pdf
** http://vgc.poly.edu/~juliana/courses/MassiveDataAnalysis2014/Lectures/query-opt.pdf
** http://vgc.poly.edu/~juliana/courses/MassiveDataAnalysis2014/Lectures/query-opt.pdf
* In-class exercise: http://vistrails.org/index.php/Big_Data_Lab_SQL


= Big Data Foundations and Infrastructure (3 weeks) =
= Big Data Foundations and Infrastructure (3 weeks) =
Line 59: Line 68:
== Week 5 -- Oct 6: Cloud computing, Map Reduce and  Hadoop ==
== Week 5 -- Oct 6: Cloud computing, Map Reduce and  Hadoop ==
* Lecture notes:   
* Lecture notes:   
** http://vgc.poly.edu/~juliana/courses/MassiveDataAnalysis2014/Lectures/mapreduce-intro.pdf
** http://vgc.poly.edu/~fchirigati/mda-class/mapreduce-intro.pdf
 
* Lab: after the lecture, you will work on an in-class exercise. For this you need to install Hadoop on your laptop and have your account setup on AWS. See instructions below.
 
* You will use two different Hadoop configurations:
** Local (on your laptop)
<!--** NYU HPC will provide accounts so that you can use a local Hadoop cluster. Please submit  a request for the to create an account for you *ASAP*. Follow the instructions to obtain an HPC account in: https://wikis.nyu.edu/display/NYUHPC/HPC+at+NYU+-+Access. You can find instructions on how to login and use the NYU Hadoop cluster at: http://vgc.poly.edu/~juliana/courses/BigData2014/Lectures/MapReduceExample/readme-nyu-hadoop.txt
** Amazon AWS: each student will receive a token with $100 credit towards computing time at AWS. See http://www.vistrails.org/index.php/AWS_Setup for instructions on how to set up AWS. '''Always remember to terminate your instances! If you don't you will be charged and you are responsible for the charges beyond your credit.'''-->
** Amazon AWS: Each student should have received a token with $100 credit towards computing time at AWS. If you have not received the token yet, contact us immediately! '''When using AWS, always remember to terminate your instances! If you don't, you will be charged and you are responsible for the charges beyond your credit.'''
** See installation instructions for Hadoop on your local machine and how to setup your AWS account in http://vgc.poly.edu/~juliana/courses/MassiveDataAnalysis2014/Lectures/HadoopExerciseInstructions.pdf
** '''Warning: Install Hadoop in your machine and setup your AWS account before class starts. There will be no time for installing software during our in-class exercise.'''
 
* In-Class Exercise: [[Course:_Massive_Data_Analysis_2014/Hadoop_Exercise | Hadoop Exercise]]
 


* Required reading:  
* Required reading:  
Line 68: Line 90:
** Hadoop: The Definitive Guide.  http://www.amazon.com/Hadoop-Definitive-Guide-Tom-White/dp/1449311520
** Hadoop: The Definitive Guide.  http://www.amazon.com/Hadoop-Definitive-Guide-Tom-White/dp/1449311520


== Week 6 -- Oct  13: Fall Break ==


== Week 6 -- Oct  13: Fall Break ==
== Week 7 -- Oct  20: Big Data Analysis with Myria  ==


* Lecture notes: 
** http://bigdata.poly.edu/~fchirigati/mda-class/dan-myria.pdf


* Useful reading:
** Myria Demo Paper: http://myria.cs.washington.edu/publications/Halperin_Myria_demo_SIGMOD_2014.pdf


== Week 7 -- Oct  20: Algorithm Design for MapReduce  ==
== Week 7 -- Oct  27: Algorithm Design for MapReduce  ==


* Lecture notes:   
* Lecture notes:   
Line 82: Line 109:
** Mining of Massive Datasets (2nd Edition), Chapter 2.
** Mining of Massive Datasets (2nd Edition), Chapter 2.


 
== Week 8 -- Nov 3: Parallel Databases vs MapReduce, Query Processing on Mapreduce and High-level Languages ==
== Week 8 -- Oct 27: Parallel Databases vs MapReduce, Query Processing on Mapreduce and High-level Languages ==


* Lecture notes:
* Lecture notes:
** http://vgc.poly.edu/~juliana/courses/MassiveDataAnalysis2014/Lectures/paralleldb-vs-hadoop-2014.pdf
** http://vgc.poly.edu/~juliana/courses/MassiveDataAnalysis2014/Lectures/paralleldb-vs-hadoop-2014.pdf
** http://vgc.poly.edu/~juliana/courses/MassiveDataAnalysis2014/Lectures/hive-pig.pdf
** http://vgc.poly.edu/~juliana/courses/MassiveDataAnalysis2014/Lectures/data-analysis-mapreduce.pdf
** http://vgc.poly.edu/~juliana/courses/MassiveDataAnalysis2014/Lectures/data-analysis-mapreduce.pdf
* Discussion about project
* Assignment: check Gradiance!


* Required reading:  
* Required reading:  
Line 100: Line 129:
** Hive - A Warehousing Solution Over a Map-Reduce Framework: http://www.vldb.org/pvldb/2/vldb09-938.pdf
** Hive - A Warehousing Solution Over a Map-Reduce Framework: http://www.vldb.org/pvldb/2/vldb09-938.pdf


= Big Data Algorithms, Techniques, and Visualization (3 weeks) =


= Big Data Algorithms and Techniques (3 weeks) =
== Week 9 -- Nov 10Visualization and Big Data -- Invited lecture by Dr. Huy Vo (NYU CUSP) ==
 
== Week 9 -- Nov 3: Association Rules ==


* Lecture notes:
* Lecture notes:
** http://vgc.poly.edu/~juliana/courses/MassiveDataAnalysis2014/Lectures/association-rules.pdf
** http://vgc.poly.edu/~juliana/courses/MassiveDataAnalysis2014/Lectures/vis_and_big_data_resized.pdf


* Reading: Chapter 6 [http://vgc.poly.edu/~juliana/courses/MassiveDataAnalysis2014/Textbooks/ullman-book-v1.1-mining-massive-data.pdf Mining of Massive Datasets]


== Week 10 -- Nov 17:  Visualization Techniques -- Invited lecture by Dr. Lauro Lins (AT&T Research) ==


* Project status report due!


== Week 10 -- Nov 10: Finding similar items ==
* Lecture notes:
** http://vgc.poly.edu/~juliana/courses/MassiveDataAnalysis2014/Lectures/intro-to-visualization.pdf
** http://vgc.poly.edu/~juliana/courses/MassiveDataAnalysis2014/Lectures/nanocubes.pdf


* Lecture notes:
* Reading:  
** http://vgc.poly.edu/~juliana/courses/MassiveDataAnalysis2014/Lectures/similarity.pdf
** Nanocubes for real-time exploration of spatiotemporal datasets. Lins et al. http://nanocubes.net/assets/pdf/nanocubes_paper.pdf


* Reading: Chapter 3 [http://vgc.poly.edu/~juliana/courses/MassiveDataAnalysis2014/Textbooks/ullman-book-v1.1-mining-massive-data.pdf Mining of Massive Datasets]
== Week 11 -- Nov 25 Association Rules  ==


* Lecture notes:
** http://vgc.poly.edu/~juliana/courses/MassiveDataAnalysis2014/Lectures/association-rules.pdf


== Week 11 -- Nov 17: Graph Analysis ==
* Assignment on frequent items and association rule mining. ''Due on Dec 7th.''  Check http://www.newgradiance.com/services


* Lecture notes:
* Reading: Chapter 6 [http://vgc.poly.edu/~juliana/courses/MassiveDataAnalysis2014/Textbooks/ullman-book-v1.1-mining-massive-data.pdf Mining of Massive Datasets]
** http://vgc.poly.edu/~juliana/courses/MassiveDataAnalysis2014/Lectures/graph-algos.pdf


* Suggested additional reading:
**Fast algorithms for mining association rules, Agrawal and Srikant, VLDB 1994.
**Data Mining Concepts and Techniques, Jiawei Han and Micheline Kamber, Morgan Kaufmann
**Dynamic Itemset Counting and Implication Rules for Market Basket Data. Brin et al., SIGMOD 1997. http://www-db.stanford.edu/~sergey/dic.html


== Week 12 -- Nov 25: Large-Scale Visualization -- Invited lecture by Dr. Lauro Lins (AT&T Research) ==
== Week 12 -- Dec 1: Project Updates  ==


* Lecture notes:
* Lecture notes:
** http://vgc.poly.edu/~juliana/courses/MassiveDataAnalysis2014/Lectures/intro-to-visualization.pdf
** http://vgc.poly.edu/~juliana/courses/MassiveDataAnalysis2014/Lectures/similarity.pdf
** http://vgc.poly.edu/~juliana/courses/MassiveDataAnalysis2014/Lectures/nanocubes.pdf
 
* Reading: Chapter 3 [http://vgc.poly.edu/~juliana/courses/MassiveDataAnalysis2014/Textbooks/ullman-book-v1.1-mining-massive-data.pdf Mining of Massive Datasets]


* Reading:  
* Quizzes on Distance Measures and Document Similarity . ''These quizzes are optional and will count as extra credit. Due on Dec 14th.''  Check http://www.newgradiance.com/services


The Value of Visualization, Jarke Van Wijk
== Week 13 -- Dec 8: Finding Similar Items and Link Analysis ==
http://www.win.tue.nl/~vanwijk/vov.pdf


Tamara Munzner's Book draft 2 available online
* Lecture notes:
http://www.cs.ubc.ca/~tmm/courses/533/book/
** http://vgc.poly.edu/~juliana/courses/MassiveDataAnalysis2014/Lectures/similarity.pdf
** http://vgc.poly.edu/~juliana/courses/MassiveDataAnalysis2014/Lectures/graph-algos.pdf


Nanocubes Paper
* Readings:
http://nanocubes.net
**Chapter 3 (pages 55-79) [http://vgc.poly.edu/~juliana/courses/MassiveDataAnalysis2014/Textbooks/ullman-book-v1.1-mining-massive-data.pdf Mining of Massive Datasets]
http://nanocubes.net/assets/pdf/nanocubes_paper_preprint.pdf
**Chapter 5 (pages 87-106) [http://vgc.poly.edu/~juliana/courses/MassiveDataAnalysis2014/Textbooks/MapReduce-algorithms-Jan2013-draft.pdf Data-Intensive Text Processing with MapReduce]


== Week 13 -- Dec 10: Project Discussion ==


== Week 13 -- Dec 1: ==
* Meeting with individual groups at 2 MTC, 10.097


== Week 14 -- Dec 8: Project Presentations  ==
== Week 14 -- Dec 15: Project Presentations  ==




== Week 15 -- Dec 15: Project Presentations ==
<!--== Week 15 -- Dec 15: Project Presentations ==-->

Latest revision as of 20:58, 8 December 2014

CS-GY 6333 Massive Data Analysis: Tentative Schedule -- subject to change

  • Lecture: Mondays, 1:00pm-3:25pm at 2MTC, room 9.011.

News

Background (4 weeks)

Week 1 -- Sept 8: Course Overview; the evolution of Data Management

Week 2 -- Sept 15: Provenance and Reproducibility

  • Github setup:

Week 3 -- Sept 22: Introduction to Databases; Relational Model and SQL

Week 4 -- Sept 29: Overview: Advanced SQL and Query Optimization

Big Data Foundations and Infrastructure (3 weeks)

Week 5 -- Oct 6: Cloud computing, Map Reduce and Hadoop

  • Lab: after the lecture, you will work on an in-class exercise. For this you need to install Hadoop on your laptop and have your account setup on AWS. See instructions below.
  • You will use two different Hadoop configurations:
    • Local (on your laptop)
    • Amazon AWS: Each student should have received a token with $100 credit towards computing time at AWS. If you have not received the token yet, contact us immediately! When using AWS, always remember to terminate your instances! If you don't, you will be charged and you are responsible for the charges beyond your credit.
    • See installation instructions for Hadoop on your local machine and how to setup your AWS account in http://vgc.poly.edu/~juliana/courses/MassiveDataAnalysis2014/Lectures/HadoopExerciseInstructions.pdf
    • Warning: Install Hadoop in your machine and setup your AWS account before class starts. There will be no time for installing software during our in-class exercise.


  • Required reading:
    • Data-Intensive Text Processing with MapReduce, Chapters 1 and 2
    • Mining of Massive Datasets (2nd Edition), Chapter 2 - 2.1 and 2.2 (Large-Scale File Systems and Map-Reduce).

Week 6 -- Oct 13: Fall Break

Week 7 -- Oct 20: Big Data Analysis with Myria

Week 7 -- Oct 27: Algorithm Design for MapReduce

  • Required reading:
    • Data-Intensive Text Processing with MapReduce, Chapters 1 and 2
    • Mining of Massive Datasets (2nd Edition), Chapter 2.

Week 8 -- Nov 3: Parallel Databases vs MapReduce, Query Processing on Mapreduce and High-level Languages

  • Discussion about project
  • Assignment: check Gradiance!


Big Data Algorithms, Techniques, and Visualization (3 weeks)

Week 9 -- Nov 10: Visualization and Big Data -- Invited lecture by Dr. Huy Vo (NYU CUSP)


Week 10 -- Nov 17: Visualization Techniques -- Invited lecture by Dr. Lauro Lins (AT&T Research)

  • Project status report due!

Week 11 -- Nov 25 Association Rules

  • Suggested additional reading:
    • Fast algorithms for mining association rules, Agrawal and Srikant, VLDB 1994.
    • Data Mining Concepts and Techniques, Jiawei Han and Micheline Kamber, Morgan Kaufmann
    • Dynamic Itemset Counting and Implication Rules for Market Basket Data. Brin et al., SIGMOD 1997. http://www-db.stanford.edu/~sergey/dic.html

Week 12 -- Dec 1: Project Updates

Week 13 -- Dec 8: Finding Similar Items and Link Analysis

Week 13 -- Dec 10: Project Discussion

  • Meeting with individual groups at 2 MTC, 10.097

Week 14 -- Dec 15: Project Presentations