Difference between revisions of "User:Tohline/Cylindrical 3D"
(→Eulerian Formulation: Fix z-dot term in continuity equation and start putting summary equations together) |
(→Eulerian Formulation: Write summary form of linearized continuity equation) |
||
(One intermediate revision by the same user not shown) | |||
Line 199: | Line 199: | ||
+ \frac{\partial}{\partial z} \biggl[ \rho \dot{z} \biggr] = 0 | + \frac{\partial}{\partial z} \biggl[ \rho \dot{z} \biggr] = 0 | ||
</math><br /> | </math><br /> | ||
</div> | |||
Assuming that the initial (subscript <i>i</i>) configuration is axisymmetric and that, following perturbation, each physical parameter, <math>Q</math>, behaves according to the relation, | |||
<div align="center"> | |||
<math> | |||
Q(\varpi, \varphi, z, t) = [q_i(\varpi, z) + \delta q(\varpi, z, t) e^{i m \varphi}] ~~~ \mathrm{and} ~~~ \delta q/q_i \ll 1 \, , | |||
</math> | |||
</div> | |||
the linearized form of the continuity equation becomes: | |||
<div align="center"> | |||
<table border="1" cellpadding="5" width="95%"> | |||
<tr> | |||
<td align="center" bgcolor="lightblue" colspan="3"> | |||
(This has been obtained by combining the expressions highlighted with a lightblue background color from the accompanying table.) | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
<math>e^{im\varphi} \biggr[ \frac{\partial (\delta\rho) }{\partial t} \biggr] </math> | |||
</td> | |||
<td align="center"> | |||
<math>=</math> | |||
</td> | |||
<td align="left"> | |||
<math> | |||
\frac{1}{\varpi} \frac{ \partial}{\partial\varpi} \biggl[ \rho_i \varpi \dot\varpi_i \biggr] | |||
+ \frac{\partial}{\partial z} \biggl[ \rho_i \dot z_i \biggr] | |||
</math> | |||
| |||
<math> | |||
+ e^{im\varphi} \biggl\{ im \biggl[ \rho_i ( \delta\dot\varphi) + \dot\varphi_i (\delta\rho) \biggr] \biggr\} | |||
</math> | |||
<math> | |||
+ e^{im\varphi} \biggl\{ \frac{ \rho_i }{\varpi} ( \delta\dot\varpi ) + \frac{ \dot\varpi_i }{\varpi} ( \delta\rho ) | |||
+ (\delta\rho) \frac{\partial {\dot\varpi_i} }{\partial\varpi} | |||
</math> | |||
<math> | |||
+ (\rho_i ) \frac{\partial ( \delta\dot\varpi)}{\partial\varpi} | |||
+ ( \delta\dot\varpi) \frac{\partial \rho_i }{\partial\varpi} + ( {\dot\varpi_i} ) \frac{\partial (\delta\rho)}{\partial\varpi} | |||
</math> | |||
<math> | |||
+ \rho_i \frac{\partial (\delta \dot z )}{\partial z} + \delta \rho \frac{\partial \dot z_i }{\partial z} + | |||
\dot z_i \frac{\partial (\delta \rho )}{\partial z} + (\delta \dot z )\frac{\partial \rho_i }{\partial z} \biggr\} | |||
</math> | |||
</td> | |||
</tr> | |||
</table> | |||
</div> | |||
<!-- | <!-- | ||
Line 218: | Line 268: | ||
<td align="center" colspan="3"> | <td align="center" colspan="3"> | ||
<math> | <math> | ||
Q(\varpi, \ | Q(\varpi, \varphi, z, t) = [q_i(\varpi, z) + \delta q(\varpi, z, t) e^{i m \varphi}] ~~~ \mathrm{and} ~~~ \delta q/q_i \ll 1 | ||
</math> | </math> | ||
</td> | </td> | ||
Line 231: | Line 281: | ||
<td align="right"> | <td align="right"> | ||
<math>\frac{\partial\rho}{\partial t}</math> | <math>\frac{\partial\rho}{\partial t}</math> | ||
</td> | |||
<td align="center"> | |||
<math>~~ \rightarrow ~~</math> | |||
</td> | |||
<td align="left"> | |||
<math> | |||
\cancel{ \frac{\partial (\rho_i) }{\partial t} } + e^{im\varphi} \biggr[ \frac{\partial (\delta\rho) }{\partial t} \biggr] | |||
</math> | |||
</td> | |||
<td align="center" colspan="2"> | |||
| |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
Line 237: | Line 304: | ||
<td align="left" bgcolor="lightblue"> | <td align="left" bgcolor="lightblue"> | ||
<math> | <math> | ||
e^{im\varphi} \biggr[ \frac{\partial (\delta\rho) }{\partial t} \biggr] | |||
</math> | </math> | ||
</td> | </td> | ||
Line 529: | Line 596: | ||
+ \frac{\partial}{\partial z} \biggl[ \rho_i \dot z_i \biggr] | + \frac{\partial}{\partial z} \biggl[ \rho_i \dot z_i \biggr] | ||
</math> | </math> | ||
| |||
<math> | <math> | ||
+ e^{im\varphi} \biggl\{ \frac{ \rho_i }{\varpi} ( \delta\dot\varpi ) + \frac{ \dot\varpi_i }{\varpi} ( \delta\rho ) | + e^{im\varphi} \biggl\{ \frac{ \rho_i }{\varpi} ( \delta\dot\varpi ) + \frac{ \dot\varpi_i }{\varpi} ( \delta\rho ) | ||
Line 571: | Line 638: | ||
<div align="center"> | |||
<span id="PGE:Euler:R"> | <span id="PGE:Euler:R"> | ||
<font color="#770000">'''<math>\varpi</math> Component of Euler Equation'''</font> | <font color="#770000">'''<math>\varpi</math> Component of Euler Equation'''</font> |
Latest revision as of 22:41, 17 March 2013
Equations Cast in Cylindrical Coordinates
Spatial Operators in Cylindrical Coordinates |
||
<math> \nabla f </math> |
= |
<math> {\hat{e}}_\varpi \biggl[ \frac{\partial f}{\partial\varpi} \biggr] + {\hat{e}}_\varphi {\biggl[ \frac{1}{\varpi} \frac{\partial f}{\partial\varphi} \biggr]} + {\hat{e}}_z \biggl[ \frac{\partial f}{\partial z} \biggr] ; </math> |
<math> \nabla^2 f </math> |
= |
<math> \frac{1}{\varpi} \frac{\partial }{\partial\varpi} \biggl[ \varpi \frac{\partial f}{\partial\varpi} \biggr] + {\frac{1}{\varpi^2} \frac{\partial^2 f}{\partial\varphi^2}} + \frac{\partial^2 f}{\partial z^2} ; </math> |
<math> (\vec{v}\cdot\nabla)f </math> |
= |
<math> \biggl[ v_\varpi \frac{\partial f}{\partial\varpi} \biggr] + {\biggl[ \frac{v_\varphi}{\varpi} \frac{\partial f}{\partial\varphi} \biggr]} + \biggl[ v_z \frac{\partial f}{\partial z} \biggr] ; </math> |
<math> \nabla \cdot \vec{F} </math> |
= |
<math> \frac{1}{\varpi} \frac{\partial (\varpi F_\varpi)}{\partial\varpi} + {\frac{1}{\varpi} \frac{\partial F_\varphi}{\partial\varphi}} + \frac{\partial F_z}{\partial z} ; </math> |
Vector Time-Derivatives in Cylindrical Coordinates |
||
<math> \frac{d}{dt}\vec{F} </math> |
= |
<math> {\hat{e}}_\varpi \frac{dF_\varpi}{dt} + F_\varpi \frac{d{\hat{e}}_\varpi}{dt} + {\hat{e}}_\varphi \frac{dF_\varphi}{dt} + F_\varphi \frac{d{\hat{e}}_\varphi}{dt} + {\hat{e}}_z \frac{dF_z}{dt} + F_z \frac{d{\hat{e}}_z}{dt} </math> |
|
= |
<math> {\hat{e}}_\varpi \biggl[ \frac{dF_\varpi}{dt} - F_\varphi \dot\varphi \biggr] + {\hat{e}}_\varphi \biggl[ \frac{dF_\varphi}{dt} + F_\varpi \dot\varphi \biggr] + {\hat{e}}_z \frac{dF_z}{dt} ; </math> |
<math> \vec{v} = \frac{d\vec{x}}{dt} = \frac{d}{dt}\biggl[ \hat{e}_\varpi \varpi + \hat{e}_z z \biggr] </math> |
= |
<math> {\hat{e}}_\varpi \biggl[ \dot\varpi \biggr] + {\hat{e}}_\varphi \biggl[ \varpi \dot\varphi \biggr] + {\hat{e}}_z \biggl[ \dot{z} \biggr] . </math> |
Governing Equations
Introducing the above expressions into the principal governing equations gives,
Equation of Continuity
<math>\frac{d\rho}{dt} + \frac{\rho}{\varpi} \frac{\partial}{\partial\varpi} \biggl[ \varpi \dot\varpi \biggr] + \frac{1}{\varpi} \frac{\partial}{\partial \varphi} \biggl[ \varpi \dot\varphi \biggr]
+ \rho \frac{\partial}{\partial z} \biggl[ \dot{z} \biggr] = 0 </math>
Euler Equation
<math>
{\hat{e}}_\varpi \biggl[ \frac{d \dot\varpi}{dt} - \varpi {\dot\varphi}^2 \biggr] + {\hat{e}}_\varphi \biggl[ \frac{d(\varpi\dot\varphi)}{dt} + \dot\varpi \dot\varphi \biggr] + {\hat{e}}_z \biggl[ \frac{d \dot{z}}{dt} \biggr] = -
{\hat{e}}_\varpi \biggl[ \frac{1}{\rho}\frac{\partial P}{\partial\varpi} + \frac{\partial \Phi}{\partial\varpi}\biggr]
- {\hat{e}}_\varphi \frac{1}{\varpi} \biggl[ \frac{1}{\rho}\frac{\partial P}{\partial \varphi} + \frac{\partial \Phi}{\partial \varphi} \biggr]
- {\hat{e}}_z \biggl[ \frac{1}{\rho}\frac{\partial P}{\partial z} + \frac{\partial \Phi}{\partial z} \biggr]
</math>
Adiabatic Form of the
First Law of Thermodynamics
<math>~\frac{d\epsilon}{dt} + P \frac{d}{dt} \biggl(\frac{1}{\rho}\biggr) = 0</math>
Poisson Equation
<math>
\frac{1}{\varpi} \frac{\partial }{\partial\varpi} \biggl[ \varpi \frac{\partial \Phi}{\partial\varpi} \biggr]
+ \frac{1}{\varpi^2} \frac{\partial^2 \Phi}{\partial \varphi^2} + \frac{\partial^2 \Phi}{\partial z^2} = 4\pi G \rho .
</math>
Eulerian Formulation
Each of the above simplified governing equations has been written in terms of Lagrangian time derivatives. An Eulerian formulation of each equation can be obtained by replacing each Lagrangian time derivative by its Eulerian counterpart. Specifically, for any scalar function, <math>f</math>,
<math> \frac{df}{dt} \rightarrow \frac{\partial f}{\partial t} + (\vec{v}\cdot \nabla)f = \frac{\partial f}{\partial t} + \biggl[ \dot\varpi \frac{\partial f}{\partial\varpi} \biggr] + \biggl[ \dot\varphi \frac{\partial f}{\partial\varphi} \biggr] + \biggl[ \dot{z} \frac{\partial f}{\partial z} \biggr] . </math>
Hence,
Equation of Continuity
<math>
\frac{\partial\rho}{\partial t} + \biggl[ \dot\varpi \frac{\partial \rho}{\partial\varpi} \biggr] + \frac{\rho}{\varpi} \frac{\partial}{\partial\varpi} \biggl[ \varpi \dot\varpi \biggr]
+ \biggl[ \dot\varphi \frac{\partial \rho}{\partial\varphi} \biggr] + \frac{1}{\varpi} \frac{\partial}{\partial \varphi} \biggl[ \varpi \dot\varphi \biggr]
+ \biggl[ \dot{z} \frac{\partial \rho}{\partial z} \biggr] + \rho \frac{\partial}{\partial z} \biggl[ \dot{z} \biggr] = 0
</math>
<math>
\Rightarrow ~~~ \frac{\partial\rho}{\partial t} + \frac{1}{\varpi} \frac{\partial}{\partial\varpi} \biggl[ \rho \varpi \dot\varpi \biggr]
+ \frac{1}{\varpi} \frac{\partial}{\partial \varphi} \biggl[ \rho \varpi \dot\varphi \biggr]
+ \frac{\partial}{\partial z} \biggl[ \rho \dot{z} \biggr] = 0
</math>
Assuming that the initial (subscript i) configuration is axisymmetric and that, following perturbation, each physical parameter, <math>Q</math>, behaves according to the relation,
<math> Q(\varpi, \varphi, z, t) = [q_i(\varpi, z) + \delta q(\varpi, z, t) e^{i m \varphi}] ~~~ \mathrm{and} ~~~ \delta q/q_i \ll 1 \, , </math>
the linearized form of the continuity equation becomes:
(This has been obtained by combining the expressions highlighted with a lightblue background color from the accompanying table.) |
||
<math>e^{im\varphi} \biggr[ \frac{\partial (\delta\rho) }{\partial t} \biggr] </math> |
<math>=</math> |
<math> \frac{1}{\varpi} \frac{ \partial}{\partial\varpi} \biggl[ \rho_i \varpi \dot\varpi_i \biggr] + \frac{\partial}{\partial z} \biggl[ \rho_i \dot z_i \biggr] </math> <math> + e^{im\varphi} \biggl\{ im \biggl[ \rho_i ( \delta\dot\varphi) + \dot\varphi_i (\delta\rho) \biggr] \biggr\} </math> <math> + e^{im\varphi} \biggl\{ \frac{ \rho_i }{\varpi} ( \delta\dot\varpi ) + \frac{ \dot\varpi_i }{\varpi} ( \delta\rho ) + (\delta\rho) \frac{\partial {\dot\varpi_i} }{\partial\varpi} </math> <math> + (\rho_i ) \frac{\partial ( \delta\dot\varpi)}{\partial\varpi} + ( \delta\dot\varpi) \frac{\partial \rho_i }{\partial\varpi} + ( {\dot\varpi_i} ) \frac{\partial (\delta\rho)}{\partial\varpi} </math> <math> + \rho_i \frac{\partial (\delta \dot z )}{\partial z} + \delta \rho \frac{\partial \dot z_i }{\partial z} + \dot z_i \frac{\partial (\delta \rho )}{\partial z} + (\delta \dot z )\frac{\partial \rho_i }{\partial z} \biggr\} </math> |
Linearize each term of the Continuity Equation assuming ... |
||||
<math> Q(\varpi, \varphi, z, t) = [q_i(\varpi, z) + \delta q(\varpi, z, t) e^{i m \varphi}] ~~~ \mathrm{and} ~~~ \delta q/q_i \ll 1 </math> |
<math> \mathrm{and} ~~~ \dot\varpi_i = \dot z_i = 0 </math> |
|||
<math>\frac{\partial\rho}{\partial t}</math> |
<math>~~ \rightarrow ~~</math> |
<math> \cancel{ \frac{\partial (\rho_i) }{\partial t} } + e^{im\varphi} \biggr[ \frac{\partial (\delta\rho) }{\partial t} \biggr] </math> |
|
|
|
<math>~~ \rightarrow ~~</math> |
<math> e^{im\varphi} \biggr[ \frac{\partial (\delta\rho) }{\partial t} \biggr] </math> |
<math>~~~ \rightarrow ~~~</math> |
<math> e^{im\varphi} \biggr[ \frac{\partial (\delta\rho) }{\partial t} \biggr] </math> |
<math>\frac{1}{\varpi} \frac{\partial}{\partial\varpi} \biggl[ \rho \varpi \dot\varpi \biggr] = \frac{\rho \dot\varpi}{\varpi} + \rho\frac{\partial \dot\varpi}{\partial\varpi} + \dot\varpi \frac{\partial \rho}{\partial\varpi} </math> |
<math>~~ \rightarrow ~~</math> |
<math> \frac{ (\rho_i + e^{im\varphi} \delta\rho) ( {\dot\varpi_i} + e^{im\varphi} \delta\dot\varpi)}{\varpi} </math> <math> + (\rho_i + e^{im\varphi} \delta\rho) \frac{\partial ( {\dot\varpi_i} + e^{im\varphi} \delta\dot\varpi)}{\partial\varpi} </math> <math> + ( {\dot\varpi_i} + e^{im\varphi} \delta\dot\varpi) \frac{\partial (\rho_i + e^{im\varphi} \delta\rho)}{\partial\varpi} </math> |
|
|
|
<math>~~ \rightarrow ~~</math> |
<math> \frac{ \rho_i \dot\varpi_i}{\varpi} + e^{im\varphi} \biggl[ \frac{ \rho_i }{\varpi} ( \delta\dot\varpi ) + \frac{ \dot\varpi_i }{\varpi} ( \delta\rho ) \biggr] + e^{2im\varphi} \biggl[ \cancel{ \frac{ (\delta\rho) ( \delta\dot\varpi)}{\varpi} } \biggr] </math> <math> + (\rho_i + e^{im\varphi} \delta\rho) \frac{\partial {\dot\varpi_i} }{\partial\varpi} + e^{im\varphi} \biggl[ (\rho_i + e^{im\varphi} \cancel{\delta\rho}) \frac{\partial ( \delta\dot\varpi)}{\partial\varpi} \biggr] </math> <math> + ( {\dot\varpi_i} + e^{im\varphi} \delta\dot\varpi) \frac{\partial \rho_i }{\partial\varpi} + e^{im\varphi}\biggl[ ( {\dot\varpi_i} + e^{im\varphi} \cancel{\delta\dot\varpi}) \frac{\partial (\delta\rho)}{\partial\varpi} \biggr] </math> |
|
|
|
<math>~~ \rightarrow ~~</math> |
<math> \frac{ \rho_i \dot\varpi_i}{\varpi} + \rho_i \frac{\partial \dot\varpi_i}{\partial \varpi} + \dot\varpi_i \frac{ \partial \rho_i}{\partial \varpi} </math> <math> + e^{im\varphi} \biggl[ \frac{ \rho_i }{\varpi} ( \delta\dot\varpi ) + \frac{ \dot\varpi_i }{\varpi} ( \delta\rho ) + (\delta\rho) \frac{\partial {\dot\varpi_i} }{\partial\varpi} </math> <math> + (\rho_i ) \frac{\partial ( \delta\dot\varpi)}{\partial\varpi} + ( \delta\dot\varpi) \frac{\partial \rho_i }{\partial\varpi} + ( {\dot\varpi_i} ) \frac{\partial (\delta\rho)}{\partial\varpi} \biggr] </math> |
<math>~~~~ \rightarrow ~~~~</math> |
<math> \cancel{ \frac{ \rho_i \dot\varpi_i}{\varpi} } + \cancel{ \rho_i \frac{\partial \dot\varpi_i}{\partial \varpi} } + \cancel{ \dot\varpi_i \frac{ \partial \rho_i}{\partial \varpi} } </math> <math> + e^{im\varphi} \biggl[ \frac{ \rho_i }{\varpi} ( \delta\dot\varpi ) + \cancel{ \frac{ \dot\varpi_i }{\varpi} ( \delta\rho ) } + \cancel{ (\delta\rho) \frac{\partial {\dot\varpi_i} }{\partial\varpi} } </math> <math> + (\rho_i ) \frac{\partial ( \delta\dot\varpi)}{\partial\varpi} + ( \delta\dot\varpi) \frac{\partial \rho_i }{\partial\varpi} + \cancel{ ( {\dot\varpi_i} ) \frac{\partial (\delta\rho)}{\partial\varpi} } \biggr] </math> |
|
<math>~~~~ \rightarrow ~~~~</math> |
<math> + e^{im\varphi} \biggl\{ \frac{1}{\varpi} \frac{\partial}{\partial\varpi} \biggl[ \varpi \rho_i (\delta \dot\varpi) \biggr] \biggr\} </math> |
||
<math>\frac{1}{\varpi} \frac{\partial}{\partial\varphi} \biggl[ \rho \varpi \dot\varphi \biggr] = \frac{\rho}{\varpi} \frac{\partial (\varpi \dot\varphi) }{\partial\varphi} + \dot\varphi \frac{\partial \rho}{\partial\varphi} </math> |
<math>~~ \rightarrow ~~</math> |
<math> (\rho_i + e^{im\varphi} \delta\rho) \frac{\partial ( {\dot\varphi_i} + e^{im\varphi} \delta\dot\varphi)}{\partial\varphi} + ( {\dot\varphi_i} +e^{im\varphi} \delta\dot\varphi) \frac{\partial (\rho_i + e^{im\varphi} \delta\rho)}{\partial\varphi} </math> |
|
|
|
<math>~~ \rightarrow ~~</math> |
<math> (\rho_i + e^{im\varphi} \delta\rho) \cancel{ \frac{\partial ( {\dot\varphi_i} )}{\partial\varphi} } + im e^{im\varphi} (\rho_i + e^{im\varphi} \cancel{ \delta\rho })( \delta\dot\varphi) </math> <math> + ( {\dot\varphi_i} +e^{im\varphi} \delta\dot\varphi) \cancel{ \frac{\partial (\rho_i )}{\partial\varphi} } + im e^{im\varphi} ( {\dot\varphi_i} +e^{im\varphi} \cancel{ \delta\dot\varphi }) (\delta\rho) </math> |
|
|
|
<math>~~ \rightarrow ~~</math> |
<math> im e^{im\varphi} \biggl[ \rho_i ( \delta\dot\varphi) + \dot\varphi_i (\delta\rho) \biggr] </math> |
<math>~~~ \rightarrow ~~~</math> |
<math> im e^{im\varphi} \biggl[ \rho_i ( \delta\dot\varphi) + \dot\varphi_i (\delta\rho) \biggr] </math> |
<math>\frac{\partial}{\partial z} \biggl[ \rho \dot{z} \biggr]</math> |
<math>~~ \rightarrow ~~</math> |
<math> (\rho_i + e^{im\varphi} \delta\rho) \frac{\partial ( {\dot{z}_i} + e^{im\varphi} \delta\dot{z})}{\partial z} + ( {\dot{z}_i} +e^{im\varphi} \delta\dot{z}) \frac{\partial (\rho_i + e^{im\varphi} \delta\rho)}{\partial z} </math> |
|
|
|
<math>~~ \rightarrow ~~</math> |
<math> (\rho_i + e^{im\varphi} \delta\rho) { \frac{\partial ( {\dot{z}_i} )}{\partial z} } + e^{im\varphi} (\rho_i + e^{im\varphi} \cancel{{ \delta\rho } } ) \frac{\partial ( \delta\dot{z})}{\partial z} </math> <math> + ( {\dot{z}_i} +e^{im\varphi} \delta\dot{z}) \frac{\partial (\rho_i )}{\partial z} + e^{im\varphi} ( {\dot{z}_i} +e^{im\varphi} \cancel{ \delta\dot{z} } ) \frac{\partial (\delta\rho)}{\partial z} </math> |
|
|
|
<math>~~ \rightarrow ~~</math> |
<math> \rho_i \frac{\partial \dot z_i }{\partial z} + \dot{z}_i \frac{\partial \rho_i}{\partial z} + e^{im\varphi} \biggl[ \rho_i \frac{\partial (\delta \dot z )}{\partial z} + \delta \rho \frac{\partial \dot z_i }{\partial z} + \dot z_i \frac{\partial (\delta \rho )}{\partial z} + (\delta \dot z )\frac{\partial \rho_i }{\partial z} \biggr] </math> |
<math>~~~ \rightarrow ~~~</math> |
<math> \rho_i \cancel{ \frac{\partial \dot z_i }{\partial z} } + \cancel{ \dot{z}_i } \frac{\partial \rho_i}{\partial z} </math> <math> + e^{im\varphi} \biggl[ \rho_i \frac{\partial (\delta \dot z )}{\partial z} + \delta \rho \cancel{ \frac{\partial \dot z_i }{\partial z} } + \cancel{ \dot z_i } \frac{\partial (\delta \rho )}{\partial z} + (\delta \dot z )\frac{\partial \rho_i }{\partial z} \biggr] </math> |
|
|
|
<math>~~~ \rightarrow ~~~</math> |
<math> e^{im\varphi} \biggl\{ \frac{\partial}{\partial z} \biggl[ \rho_i (\delta \dot z ) \biggr] \biggr\} </math> |
Combining all terms: |
<math>~~~ \rightarrow ~~~</math> |
<math>e^{im\varphi} \biggr[ \frac{\partial (\delta\rho) }{\partial t} \biggr] = \frac{1}{\varpi} \frac{ \partial}{\partial\varpi} \biggl[ \rho_i \varpi \dot\varpi_i \biggr] + \frac{\partial}{\partial z} \biggl[ \rho_i \dot z_i \biggr] </math> <math> + e^{im\varphi} \biggl\{ \frac{ \rho_i }{\varpi} ( \delta\dot\varpi ) + \frac{ \dot\varpi_i }{\varpi} ( \delta\rho ) + (\delta\rho) \frac{\partial {\dot\varpi_i} }{\partial\varpi} </math> <math> + (\rho_i ) \frac{\partial ( \delta\dot\varpi)}{\partial\varpi} + ( \delta\dot\varpi) \frac{\partial \rho_i }{\partial\varpi} + ( {\dot\varpi_i} ) \frac{\partial (\delta\rho)}{\partial\varpi} </math> <math> + im \biggl[ \rho_i ( \delta\dot\varphi) + \dot\varphi_i (\delta\rho) \biggr] </math> <math> + \rho_i \frac{\partial (\delta \dot z )}{\partial z} + \delta \rho \frac{\partial \dot z_i }{\partial z} + \dot z_i \frac{\partial (\delta \rho )}{\partial z} + (\delta \dot z )\frac{\partial \rho_i }{\partial z} \biggr\} </math> |
<math>~~~ \rightarrow ~~~</math> |
<math> + e^{im\varphi} \biggl\{ \frac{\partial}{\partial z} \biggl[ \rho_i (\delta \dot z ) \biggr] \biggr\} </math> |
<math>\varpi</math> Component of Euler Equation
<math>
\frac{d \dot\varpi}{dt} - \varpi {\dot\varphi}^2 = - \frac{1}{\rho}\frac{\partial P}{\partial\varpi} - \frac{\partial \Phi}{\partial\varpi}
</math>
<math>
\rightarrow ~~~ \frac{\partial \dot\varpi}{\partial t} + \biggl[ \dot\varpi \frac{\partial \dot\varpi}{\partial\varpi} \biggr] +
\biggl[ \dot\varphi \frac{\partial \dot\varpi}{\partial\varphi} \biggr] +
\biggl[ \dot{z} \frac{\partial \dot\varpi}{\partial z} \biggr] - \varpi {\dot\varphi}^2 =
- \frac{1}{\rho}\frac{\partial P}{\partial\varpi} - \frac{\partial \Phi}{\partial\varpi}
</math>
<math>\varphi</math> Component of Euler Equation
<math>
\frac{d (\varpi\dot\varphi) }{dt} + \dot\varpi \dot\varphi =
- \frac{1}{\varpi} \biggl[ \frac{1}{\rho}\frac{\partial P}{\partial \varphi} + \frac{\partial \Phi}{\partial \varphi} \biggr]
</math>
<math>
\rightarrow ~~~ \frac{\partial (\varpi\dot\varphi)}{\partial t} + \biggl[ \dot\varpi \frac{\partial (\varpi\dot\varphi)}{\partial\varpi} \biggr] +
\biggl[ \dot\varphi \frac{\partial (\varpi\dot\varphi)}{\partial\varphi} \biggr] +
\biggl[ \dot{z} \frac{\partial (\varpi\dot\varphi)}{\partial z} \biggr] + \dot\varpi \dot\varphi =
- \frac{1}{\varpi} \biggl[ \frac{1}{\rho}\frac{\partial P}{\partial \varphi} + \frac{\partial \Phi}{\partial \varphi} \biggr]
</math>
<math>z</math> Component of Euler Equation
<math>
\frac{d \dot{z} }{dt} = - \frac{1}{\rho}\frac{\partial P}{\partial z} - \frac{\partial \Phi}{\partial z}
</math>
<math>
\rightarrow ~~~ \frac{\partial \dot{z}}{\partial t} + \biggl[ \dot\varpi \frac{\partial \dot{z}}{\partial\varpi} \biggr]
+ \biggl[ \dot\varphi \frac{\partial \dot{z}}{\partial\varphi} \biggr] +\biggl[ \dot{z} \frac{\partial \dot{z}}{\partial z} \biggr] =
- \frac{1}{\rho}\frac{\partial P}{\partial z} - \frac{\partial \Phi}{\partial z}
</math>
See Also
© 2014 - 2021 by Joel E. Tohline |